Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 0387789014
Category : Mathematics
Languages : en
Pages : 307
Book Description
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
Lattices and Ordered Sets
Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 0387789014
Category : Mathematics
Languages : en
Pages : 307
Book Description
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
Publisher: Springer Science & Business Media
ISBN: 0387789014
Category : Mathematics
Languages : en
Pages : 307
Book Description
This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.
Ordered Sets and Lattices II
Author:
Publisher: American Mathematical Soc.
ISBN: 9780821895887
Category : Mathematics
Languages : en
Pages : 262
Book Description
This indispensable reference source contains a wealth of information on lattice theory. The book presents a survey of virtually everything published in the fields of partially ordered sets, semilattices, lattices, and Boolean algebras that was reviewed in Referativnyi Zhurnal Matematika from mid-1982 to the end of 1985. A continuation of a previous volume (the English translation of which was published by the AMS in 1989, as volume 141 in Translations - Series 2), this comprehensive work contains more than 2200 references. Many of the papers covered here were originally published in virtually inaccessible places. The compilation of the volume was directed by Milan Kolibiar of Comenius University at Bratislava and Lev A. Skornyakov of Moscow University. Of interest to mathematicians, as well as to philosophers and computer scientists in certain areas, this unique compendium is a must for any mathematical library.
Publisher: American Mathematical Soc.
ISBN: 9780821895887
Category : Mathematics
Languages : en
Pages : 262
Book Description
This indispensable reference source contains a wealth of information on lattice theory. The book presents a survey of virtually everything published in the fields of partially ordered sets, semilattices, lattices, and Boolean algebras that was reviewed in Referativnyi Zhurnal Matematika from mid-1982 to the end of 1985. A continuation of a previous volume (the English translation of which was published by the AMS in 1989, as volume 141 in Translations - Series 2), this comprehensive work contains more than 2200 references. Many of the papers covered here were originally published in virtually inaccessible places. The compilation of the volume was directed by Milan Kolibiar of Comenius University at Bratislava and Lev A. Skornyakov of Moscow University. Of interest to mathematicians, as well as to philosophers and computer scientists in certain areas, this unique compendium is a must for any mathematical library.
Introduction to Lattices and Order
Author: B. A. Davey
Publisher: Cambridge University Press
ISBN: 1107717523
Category : Mathematics
Languages : en
Pages : 316
Book Description
This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.
Publisher: Cambridge University Press
ISBN: 1107717523
Category : Mathematics
Languages : en
Pages : 316
Book Description
This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.
Lattices and Ordered Algebraic Structures
Author: T.S. Blyth
Publisher: Springer Science & Business Media
ISBN: 1852339055
Category : Mathematics
Languages : en
Pages : 311
Book Description
"The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS
Publisher: Springer Science & Business Media
ISBN: 1852339055
Category : Mathematics
Languages : en
Pages : 311
Book Description
"The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS
An Introduction to Partially Ordered Structures and Sheaves
Author: Francisco Miraglia
Publisher: Polimetrica s.a.s.
ISBN: 8876990356
Category : Mathematics
Languages : en
Pages : 517
Book Description
Publisher: Polimetrica s.a.s.
ISBN: 8876990356
Category : Mathematics
Languages : en
Pages : 517
Book Description
Discrete Mathematics
Author: Babu Ram
Publisher: Pearson Education India
ISBN: 9788131733103
Category : Computer science
Languages : en
Pages : 588
Book Description
Discrete Mathematics will be of use to any undergraduate as well as post graduate courses in Computer Science and Mathematics. The syllabi of all these courses have been studied in depth and utmost care has been taken to ensure that all the essential topics in discrete structures are adequately emphasized. The book will enable the students to develop the requisite computational skills needed in software engineering.
Publisher: Pearson Education India
ISBN: 9788131733103
Category : Computer science
Languages : en
Pages : 588
Book Description
Discrete Mathematics will be of use to any undergraduate as well as post graduate courses in Computer Science and Mathematics. The syllabi of all these courses have been studied in depth and utmost care has been taken to ensure that all the essential topics in discrete structures are adequately emphasized. The book will enable the students to develop the requisite computational skills needed in software engineering.
Ordered Sets
Author: Bernd Schröder
Publisher: Springer Science & Business Media
ISBN: 1461200539
Category : Mathematics
Languages : en
Pages : 401
Book Description
An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.
Publisher: Springer Science & Business Media
ISBN: 1461200539
Category : Mathematics
Languages : en
Pages : 401
Book Description
An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.
Lattice-Ordered Groups
Author: M.E Anderson
Publisher: Springer Science & Business Media
ISBN: 9400928718
Category : Computers
Languages : en
Pages : 197
Book Description
The study of groups equipped with a compatible lattice order ("lattice-ordered groups" or "I!-groups") has arisen in a number of different contexts. Examples of this include the study of ideals and divisibility, dating back to the work of Dedekind and continued by Krull; the pioneering work of Hahn on totally ordered abelian groups; and the work of Kantorovich and other analysts on partially ordered function spaces. After the Second World War, the theory of lattice-ordered groups became a subject of study in its own right, following the publication of fundamental papers by Birkhoff, Nakano and Lorenzen. The theory blossomed under the leadership of Paul Conrad, whose important papers in the 1960s provided the tools for describing the structure for many classes of I!-groups in terms of their convex I!-subgroups. A particularly significant success of this approach was the generalization of Hahn's embedding theorem to the case of abelian lattice-ordered groups, work done with his students John Harvey and Charles Holland. The results of this period are summarized in Conrad's "blue notes" [C].
Publisher: Springer Science & Business Media
ISBN: 9400928718
Category : Computers
Languages : en
Pages : 197
Book Description
The study of groups equipped with a compatible lattice order ("lattice-ordered groups" or "I!-groups") has arisen in a number of different contexts. Examples of this include the study of ideals and divisibility, dating back to the work of Dedekind and continued by Krull; the pioneering work of Hahn on totally ordered abelian groups; and the work of Kantorovich and other analysts on partially ordered function spaces. After the Second World War, the theory of lattice-ordered groups became a subject of study in its own right, following the publication of fundamental papers by Birkhoff, Nakano and Lorenzen. The theory blossomed under the leadership of Paul Conrad, whose important papers in the 1960s provided the tools for describing the structure for many classes of I!-groups in terms of their convex I!-subgroups. A particularly significant success of this approach was the generalization of Hahn's embedding theorem to the case of abelian lattice-ordered groups, work done with his students John Harvey and Charles Holland. The results of this period are summarized in Conrad's "blue notes" [C].
Introduction to Lattices and Order
Author: B. A. Davey
Publisher: Cambridge University Press
ISBN: 9780521784511
Category : Mathematics
Languages : en
Pages : 316
Book Description
This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.
Publisher: Cambridge University Press
ISBN: 9780521784511
Category : Mathematics
Languages : en
Pages : 316
Book Description
This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.
Ordered Sets
Author: Ivan Rival
Publisher: Springer Science & Business Media
ISBN: 9400977980
Category : Computers
Languages : en
Pages : 963
Book Description
This volume contains all twenty-three of the principal survey papers presented at the Symposium on Ordered Sets held at Banff, Canada from August 28 to September 12, 1981. The Symposium was supported by grants from the NATO Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada, the Canadian Mathematical Society Summer Research Institute programme, and the University of Calgary. tve are very grateful to these Organizations for their considerable interest and support. Over forty years ago on April 15, 1938 the first Symposium on Lattice Theory was held in Charlottesville, U.S.A. in conjunction with a meeting of the American Mathematical Society. The principal addresses on that occasion were Lattices and their applications by G. Birkhoff, On the application of structure theory to groups by O. Ore, and The representation of Boolean algebras by M. H. Stone. The texts of these addresses and three others by R. Baer, H. M. MacNeille, and K. Menger appear in the Bulletin of the American Mathematical Society, Volume 44, 1938. In those days the theory of ordered sets, and especially lattice theory was described as a "vigorous and promising younger brother of group theory." Some early workers hoped that lattice theoretic methods would lead to solutions of important problems in group theory.
Publisher: Springer Science & Business Media
ISBN: 9400977980
Category : Computers
Languages : en
Pages : 963
Book Description
This volume contains all twenty-three of the principal survey papers presented at the Symposium on Ordered Sets held at Banff, Canada from August 28 to September 12, 1981. The Symposium was supported by grants from the NATO Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada, the Canadian Mathematical Society Summer Research Institute programme, and the University of Calgary. tve are very grateful to these Organizations for their considerable interest and support. Over forty years ago on April 15, 1938 the first Symposium on Lattice Theory was held in Charlottesville, U.S.A. in conjunction with a meeting of the American Mathematical Society. The principal addresses on that occasion were Lattices and their applications by G. Birkhoff, On the application of structure theory to groups by O. Ore, and The representation of Boolean algebras by M. H. Stone. The texts of these addresses and three others by R. Baer, H. M. MacNeille, and K. Menger appear in the Bulletin of the American Mathematical Society, Volume 44, 1938. In those days the theory of ordered sets, and especially lattice theory was described as a "vigorous and promising younger brother of group theory." Some early workers hoped that lattice theoretic methods would lead to solutions of important problems in group theory.