Author: A.B. Piunovskiy
Publisher: Springer Science & Business Media
ISBN: 9401155089
Category : Mathematics
Languages : en
Pages : 355
Book Description
Controlled stochastic processes with discrete time form a very interest ing and meaningful field of research which attracts widespread attention. At the same time these processes are used for solving of many applied problems in the queueing theory, in mathematical economics. in the theory of controlled technical systems, etc. . In this connection, methods of the theory of controlled processes constitute the every day instrument of many specialists working in the areas mentioned. The present book is devoted to the rather new area, that is, to the optimal control theory with functional constraints. This theory is close to the theory of multicriteria optimization. The compromise between the mathematical rigor and the big number of meaningful examples makes the book attractive for professional mathematicians and for specialists who ap ply mathematical methods in different specific problems. Besides. the book contains setting of many new interesting problems for further invf'stigatioll. The book can form the basis of special courses in the theory of controlled stochastic processes for students and post-graduates specializing in the ap plied mathematics and in the control theory of complex systf'ms. The grounding of graduating students of mathematical department is sufficient for the perfect understanding of all the material. The book con tains the extensive Appendix where the necessary knowledge ill Borel spaces and in convex analysis is collected. All the meaningful examples can be also understood by readers who are not deeply grounded in mathematics.
Optimal Control of Random Sequences in Problems with Constraints
Author: A.B. Piunovskiy
Publisher: Springer Science & Business Media
ISBN: 9401155089
Category : Mathematics
Languages : en
Pages : 355
Book Description
Controlled stochastic processes with discrete time form a very interest ing and meaningful field of research which attracts widespread attention. At the same time these processes are used for solving of many applied problems in the queueing theory, in mathematical economics. in the theory of controlled technical systems, etc. . In this connection, methods of the theory of controlled processes constitute the every day instrument of many specialists working in the areas mentioned. The present book is devoted to the rather new area, that is, to the optimal control theory with functional constraints. This theory is close to the theory of multicriteria optimization. The compromise between the mathematical rigor and the big number of meaningful examples makes the book attractive for professional mathematicians and for specialists who ap ply mathematical methods in different specific problems. Besides. the book contains setting of many new interesting problems for further invf'stigatioll. The book can form the basis of special courses in the theory of controlled stochastic processes for students and post-graduates specializing in the ap plied mathematics and in the control theory of complex systf'ms. The grounding of graduating students of mathematical department is sufficient for the perfect understanding of all the material. The book con tains the extensive Appendix where the necessary knowledge ill Borel spaces and in convex analysis is collected. All the meaningful examples can be also understood by readers who are not deeply grounded in mathematics.
Publisher: Springer Science & Business Media
ISBN: 9401155089
Category : Mathematics
Languages : en
Pages : 355
Book Description
Controlled stochastic processes with discrete time form a very interest ing and meaningful field of research which attracts widespread attention. At the same time these processes are used for solving of many applied problems in the queueing theory, in mathematical economics. in the theory of controlled technical systems, etc. . In this connection, methods of the theory of controlled processes constitute the every day instrument of many specialists working in the areas mentioned. The present book is devoted to the rather new area, that is, to the optimal control theory with functional constraints. This theory is close to the theory of multicriteria optimization. The compromise between the mathematical rigor and the big number of meaningful examples makes the book attractive for professional mathematicians and for specialists who ap ply mathematical methods in different specific problems. Besides. the book contains setting of many new interesting problems for further invf'stigatioll. The book can form the basis of special courses in the theory of controlled stochastic processes for students and post-graduates specializing in the ap plied mathematics and in the control theory of complex systf'ms. The grounding of graduating students of mathematical department is sufficient for the perfect understanding of all the material. The book con tains the extensive Appendix where the necessary knowledge ill Borel spaces and in convex analysis is collected. All the meaningful examples can be also understood by readers who are not deeply grounded in mathematics.
Optimal Control of Random Sequences in Problems with Constraints
Author: A.B. Piunovskiy
Publisher: Springer
ISBN: 9789401155090
Category : Mathematics
Languages : en
Pages : 348
Book Description
Controlled stochastic processes with discrete time form a very interest ing and meaningful field of research which attracts widespread attention. At the same time these processes are used for solving of many applied problems in the queueing theory, in mathematical economics. in the theory of controlled technical systems, etc. . In this connection, methods of the theory of controlled processes constitute the every day instrument of many specialists working in the areas mentioned. The present book is devoted to the rather new area, that is, to the optimal control theory with functional constraints. This theory is close to the theory of multicriteria optimization. The compromise between the mathematical rigor and the big number of meaningful examples makes the book attractive for professional mathematicians and for specialists who ap ply mathematical methods in different specific problems. Besides. the book contains setting of many new interesting problems for further invf'stigatioll. The book can form the basis of special courses in the theory of controlled stochastic processes for students and post-graduates specializing in the ap plied mathematics and in the control theory of complex systf'ms. The grounding of graduating students of mathematical department is sufficient for the perfect understanding of all the material. The book con tains the extensive Appendix where the necessary knowledge ill Borel spaces and in convex analysis is collected. All the meaningful examples can be also understood by readers who are not deeply grounded in mathematics.
Publisher: Springer
ISBN: 9789401155090
Category : Mathematics
Languages : en
Pages : 348
Book Description
Controlled stochastic processes with discrete time form a very interest ing and meaningful field of research which attracts widespread attention. At the same time these processes are used for solving of many applied problems in the queueing theory, in mathematical economics. in the theory of controlled technical systems, etc. . In this connection, methods of the theory of controlled processes constitute the every day instrument of many specialists working in the areas mentioned. The present book is devoted to the rather new area, that is, to the optimal control theory with functional constraints. This theory is close to the theory of multicriteria optimization. The compromise between the mathematical rigor and the big number of meaningful examples makes the book attractive for professional mathematicians and for specialists who ap ply mathematical methods in different specific problems. Besides. the book contains setting of many new interesting problems for further invf'stigatioll. The book can form the basis of special courses in the theory of controlled stochastic processes for students and post-graduates specializing in the ap plied mathematics and in the control theory of complex systf'ms. The grounding of graduating students of mathematical department is sufficient for the perfect understanding of all the material. The book con tains the extensive Appendix where the necessary knowledge ill Borel spaces and in convex analysis is collected. All the meaningful examples can be also understood by readers who are not deeply grounded in mathematics.
Constrained Markov Decision Processes
Author: Eitan Altman
Publisher: CRC Press
ISBN: 9780849303821
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other. The first part explains the theory for the finite state space. The author characterizes the set of achievable expected occupation measures as well as performance vectors, and identifies simple classes of policies among which optimal policies exist. This allows the reduction of the original dynamic into a linear program. A Lagranian approach is then used to derive the dual linear program using dynamic programming techniques. In the second part, these results are extended to the infinite state space and action spaces. The author provides two frameworks: the case where costs are bounded below and the contracting framework. The third part builds upon the results of the first two parts and examines asymptotical results of the convergence of both the value and the policies in the time horizon and in the discount factor. Finally, several state truncation algorithms that enable the approximation of the solution of the original control problem via finite linear programs are given.
Publisher: CRC Press
ISBN: 9780849303821
Category : Mathematics
Languages : en
Pages : 260
Book Description
This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other. The first part explains the theory for the finite state space. The author characterizes the set of achievable expected occupation measures as well as performance vectors, and identifies simple classes of policies among which optimal policies exist. This allows the reduction of the original dynamic into a linear program. A Lagranian approach is then used to derive the dual linear program using dynamic programming techniques. In the second part, these results are extended to the infinite state space and action spaces. The author provides two frameworks: the case where costs are bounded below and the contracting framework. The third part builds upon the results of the first two parts and examines asymptotical results of the convergence of both the value and the policies in the time horizon and in the discount factor. Finally, several state truncation algorithms that enable the approximation of the solution of the original control problem via finite linear programs are given.
Optimal Design of Control Systems
Author: Gennadii E. Kolosov
Publisher: CRC Press
ISBN: 1000146758
Category : Mathematics
Languages : en
Pages : 424
Book Description
"Covers design methods for optimal (or quasioptimal) control algorithms in the form of synthesis for deterministic and stochastic dynamical systems-with applications in aerospace, robotic, and servomechanical technologies. Providing new results on exact and approximate solutions of optimal control problems."
Publisher: CRC Press
ISBN: 1000146758
Category : Mathematics
Languages : en
Pages : 424
Book Description
"Covers design methods for optimal (or quasioptimal) control algorithms in the form of synthesis for deterministic and stochastic dynamical systems-with applications in aerospace, robotic, and servomechanical technologies. Providing new results on exact and approximate solutions of optimal control problems."
Markov Decision Processes with Applications to Finance
Author: Nicole Bäuerle
Publisher: Springer Science & Business Media
ISBN: 3642183247
Category : Mathematics
Languages : en
Pages : 393
Book Description
The theory of Markov decision processes focuses on controlled Markov chains in discrete time. The authors establish the theory for general state and action spaces and at the same time show its application by means of numerous examples, mostly taken from the fields of finance and operations research. By using a structural approach many technicalities (concerning measure theory) are avoided. They cover problems with finite and infinite horizons, as well as partially observable Markov decision processes, piecewise deterministic Markov decision processes and stopping problems. The book presents Markov decision processes in action and includes various state-of-the-art applications with a particular view towards finance. It is useful for upper-level undergraduates, Master's students and researchers in both applied probability and finance, and provides exercises (without solutions).
Publisher: Springer Science & Business Media
ISBN: 3642183247
Category : Mathematics
Languages : en
Pages : 393
Book Description
The theory of Markov decision processes focuses on controlled Markov chains in discrete time. The authors establish the theory for general state and action spaces and at the same time show its application by means of numerous examples, mostly taken from the fields of finance and operations research. By using a structural approach many technicalities (concerning measure theory) are avoided. They cover problems with finite and infinite horizons, as well as partially observable Markov decision processes, piecewise deterministic Markov decision processes and stopping problems. The book presents Markov decision processes in action and includes various state-of-the-art applications with a particular view towards finance. It is useful for upper-level undergraduates, Master's students and researchers in both applied probability and finance, and provides exercises (without solutions).
Optimization Under Stochastic Uncertainty
Author: Kurt Marti
Publisher: Springer Nature
ISBN: 303055662X
Category : Business & Economics
Languages : en
Pages : 390
Book Description
This book examines application and methods to incorporating stochastic parameter variations into the optimization process to decrease expense in corrective measures. Basic types of deterministic substitute problems occurring mostly in practice involve i) minimization of the expected primary costs subject to expected recourse cost constraints (reliability constraints) and remaining deterministic constraints, e.g. box constraints, as well as ii) minimization of the expected total costs (costs of construction, design, recourse costs, etc.) subject to the remaining deterministic constraints. After an introduction into the theory of dynamic control systems with random parameters, the major control laws are described, as open-loop control, closed-loop, feedback control and open-loop feedback control, used for iterative construction of feedback controls. For approximate solution of optimization and control problems with random parameters and involving expected cost/loss-type objective, constraint functions, Taylor expansion procedures, and Homotopy methods are considered, Examples and applications to stochastic optimization of regulators are given. Moreover, for reliability-based analysis and optimal design problems, corresponding optimization-based limit state functions are constructed. Because of the complexity of concrete optimization/control problems and their lack of the mathematical regularity as required of Mathematical Programming (MP) techniques, other optimization techniques, like random search methods (RSM) became increasingly important. Basic results on the convergence and convergence rates of random search methods are presented. Moreover, for the improvement of the – sometimes very low – convergence rate of RSM, search methods based on optimal stochastic decision processes are presented. In order to improve the convergence behavior of RSM, the random search procedure is embedded into a stochastic decision process for an optimal control of the probability distributions of the search variates (mutation random variables).
Publisher: Springer Nature
ISBN: 303055662X
Category : Business & Economics
Languages : en
Pages : 390
Book Description
This book examines application and methods to incorporating stochastic parameter variations into the optimization process to decrease expense in corrective measures. Basic types of deterministic substitute problems occurring mostly in practice involve i) minimization of the expected primary costs subject to expected recourse cost constraints (reliability constraints) and remaining deterministic constraints, e.g. box constraints, as well as ii) minimization of the expected total costs (costs of construction, design, recourse costs, etc.) subject to the remaining deterministic constraints. After an introduction into the theory of dynamic control systems with random parameters, the major control laws are described, as open-loop control, closed-loop, feedback control and open-loop feedback control, used for iterative construction of feedback controls. For approximate solution of optimization and control problems with random parameters and involving expected cost/loss-type objective, constraint functions, Taylor expansion procedures, and Homotopy methods are considered, Examples and applications to stochastic optimization of regulators are given. Moreover, for reliability-based analysis and optimal design problems, corresponding optimization-based limit state functions are constructed. Because of the complexity of concrete optimization/control problems and their lack of the mathematical regularity as required of Mathematical Programming (MP) techniques, other optimization techniques, like random search methods (RSM) became increasingly important. Basic results on the convergence and convergence rates of random search methods are presented. Moreover, for the improvement of the – sometimes very low – convergence rate of RSM, search methods based on optimal stochastic decision processes are presented. In order to improve the convergence behavior of RSM, the random search procedure is embedded into a stochastic decision process for an optimal control of the probability distributions of the search variates (mutation random variables).
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 912
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 912
Book Description
Handbook of Markov Decision Processes
Author: Eugene A. Feinberg
Publisher: Springer Science & Business Media
ISBN: 1461508053
Category : Business & Economics
Languages : en
Pages : 560
Book Description
Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.
Publisher: Springer Science & Business Media
ISBN: 1461508053
Category : Business & Economics
Languages : en
Pages : 560
Book Description
Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 962
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 962
Book Description
Reinforcement Learning and Optimal Control
Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529396
Category : Computers
Languages : en
Pages : 388
Book Description
This book considers large and challenging multistage decision problems, which can be solved in principle by dynamic programming (DP), but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance. These methods are collectively known by several essentially equivalent names: reinforcement learning, approximate dynamic programming, neuro-dynamic programming. They have been at the forefront of research for the last 25 years, and they underlie, among others, the recent impressive successes of self-learning in the context of games such as chess and Go. Our subject has benefited greatly from the interplay of ideas from optimal control and from artificial intelligence, as it relates to reinforcement learning and simulation-based neural network methods. One of the aims of the book is to explore the common boundary between these two fields and to form a bridge that is accessible by workers with background in either field. Another aim is to organize coherently the broad mosaic of methods that have proved successful in practice while having a solid theoretical and/or logical foundation. This may help researchers and practitioners to find their way through the maze of competing ideas that constitute the current state of the art. This book relates to several of our other books: Neuro-Dynamic Programming (Athena Scientific, 1996), Dynamic Programming and Optimal Control (4th edition, Athena Scientific, 2017), Abstract Dynamic Programming (2nd edition, Athena Scientific, 2018), and Nonlinear Programming (Athena Scientific, 2016). However, the mathematical style of this book is somewhat different. While we provide a rigorous, albeit short, mathematical account of the theory of finite and infinite horizon dynamic programming, and some fundamental approximation methods, we rely more on intuitive explanations and less on proof-based insights. Moreover, our mathematical requirements are quite modest: calculus, a minimal use of matrix-vector algebra, and elementary probability (mathematically complicated arguments involving laws of large numbers and stochastic convergence are bypassed in favor of intuitive explanations). The book illustrates the methodology with many examples and illustrations, and uses a gradual expository approach, which proceeds along four directions: (a) From exact DP to approximate DP: We first discuss exact DP algorithms, explain why they may be difficult to implement, and then use them as the basis for approximations. (b) From finite horizon to infinite horizon problems: We first discuss finite horizon exact and approximate DP methodologies, which are intuitive and mathematically simple, and then progress to infinite horizon problems. (c) From deterministic to stochastic models: We often discuss separately deterministic and stochastic problems, since deterministic problems are simpler and offer special advantages for some of our methods. (d) From model-based to model-free implementations: We first discuss model-based implementations, and then we identify schemes that can be appropriately modified to work with a simulator. The book is related and supplemented by the companion research monograph Rollout, Policy Iteration, and Distributed Reinforcement Learning (Athena Scientific, 2020), which focuses more closely on several topics related to rollout, approximate policy iteration, multiagent problems, discrete and Bayesian optimization, and distributed computation, which are either discussed in less detail or not covered at all in the present book. The author's website contains class notes, and a series of videolectures and slides from a 2021 course at ASU, which address a selection of topics from both books.
Publisher: Athena Scientific
ISBN: 1886529396
Category : Computers
Languages : en
Pages : 388
Book Description
This book considers large and challenging multistage decision problems, which can be solved in principle by dynamic programming (DP), but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance. These methods are collectively known by several essentially equivalent names: reinforcement learning, approximate dynamic programming, neuro-dynamic programming. They have been at the forefront of research for the last 25 years, and they underlie, among others, the recent impressive successes of self-learning in the context of games such as chess and Go. Our subject has benefited greatly from the interplay of ideas from optimal control and from artificial intelligence, as it relates to reinforcement learning and simulation-based neural network methods. One of the aims of the book is to explore the common boundary between these two fields and to form a bridge that is accessible by workers with background in either field. Another aim is to organize coherently the broad mosaic of methods that have proved successful in practice while having a solid theoretical and/or logical foundation. This may help researchers and practitioners to find their way through the maze of competing ideas that constitute the current state of the art. This book relates to several of our other books: Neuro-Dynamic Programming (Athena Scientific, 1996), Dynamic Programming and Optimal Control (4th edition, Athena Scientific, 2017), Abstract Dynamic Programming (2nd edition, Athena Scientific, 2018), and Nonlinear Programming (Athena Scientific, 2016). However, the mathematical style of this book is somewhat different. While we provide a rigorous, albeit short, mathematical account of the theory of finite and infinite horizon dynamic programming, and some fundamental approximation methods, we rely more on intuitive explanations and less on proof-based insights. Moreover, our mathematical requirements are quite modest: calculus, a minimal use of matrix-vector algebra, and elementary probability (mathematically complicated arguments involving laws of large numbers and stochastic convergence are bypassed in favor of intuitive explanations). The book illustrates the methodology with many examples and illustrations, and uses a gradual expository approach, which proceeds along four directions: (a) From exact DP to approximate DP: We first discuss exact DP algorithms, explain why they may be difficult to implement, and then use them as the basis for approximations. (b) From finite horizon to infinite horizon problems: We first discuss finite horizon exact and approximate DP methodologies, which are intuitive and mathematically simple, and then progress to infinite horizon problems. (c) From deterministic to stochastic models: We often discuss separately deterministic and stochastic problems, since deterministic problems are simpler and offer special advantages for some of our methods. (d) From model-based to model-free implementations: We first discuss model-based implementations, and then we identify schemes that can be appropriately modified to work with a simulator. The book is related and supplemented by the companion research monograph Rollout, Policy Iteration, and Distributed Reinforcement Learning (Athena Scientific, 2020), which focuses more closely on several topics related to rollout, approximate policy iteration, multiagent problems, discrete and Bayesian optimization, and distributed computation, which are either discussed in less detail or not covered at all in the present book. The author's website contains class notes, and a series of videolectures and slides from a 2021 course at ASU, which address a selection of topics from both books.