Normal Forms, Bifurcations and Finiteness Problems in Differential Equations

Normal Forms, Bifurcations and Finiteness Problems in Differential Equations PDF Author: Christiane Rousseau
Publisher: Springer Science & Business Media
ISBN: 9781402019296
Category : Mathematics
Languages : en
Pages : 548

Get Book Here

Book Description
Proceedings of the Nato Advanced Study Institute, held in Montreal, Canada, from 8 to 19 July 2002

Normal Forms, Bifurcations and Finiteness Problems in Differential Equations

Normal Forms, Bifurcations and Finiteness Problems in Differential Equations PDF Author: Christiane Rousseau
Publisher: Springer Science & Business Media
ISBN: 9781402019296
Category : Mathematics
Languages : en
Pages : 548

Get Book Here

Book Description
Proceedings of the Nato Advanced Study Institute, held in Montreal, Canada, from 8 to 19 July 2002

Handbook of Differential Equations: Ordinary Differential Equations

Handbook of Differential Equations: Ordinary Differential Equations PDF Author: Flaviano Battelli
Publisher: Elsevier
ISBN: 0080559468
Category : Mathematics
Languages : en
Pages : 719

Get Book Here

Book Description
This handbook is the fourth volume in a series of volumes devoted to self-contained and up-to-date surveys in the theory of ordinary differential equations, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience. - Covers a variety of problems in ordinary differential equations - Pure mathematical and real-world applications - Written for mathematicians and scientists of many related fields

Smooth Invariant Manifolds and Normal Forms

Smooth Invariant Manifolds and Normal Forms PDF Author: I. U. Bronshte?n
Publisher: World Scientific
ISBN: 9789810215729
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
This book deals with the qualitative theory of dynamical systems and is devoted to the study of flows and cascades in the vicinity of a smooth invariant manifold. Its main purpose is to present, as completely as possible, the basic results concerning the existence of stable and unstable local manifolds and the recent advancements in the theory of finitely smooth normal forms of vector fields and diffeomorphisms in the vicinity of a rest point and a periodic trajectory. A summary of the results obtained so far in the investigation of dynamical systems near an arbitrary invariant submanifold is also given.

Dynamical Systems I

Dynamical Systems I PDF Author: S.Kh. Aranson
Publisher: Springer Science & Business Media
ISBN: 9783540612209
Category : Mathematics
Languages : en
Pages : 254

Get Book Here

Book Description
From the reviews: "The reading is very easy and pleasant for the non-mathematician, which is really noteworthy. The two chapters enunciate the basic principles of the field, ... indicate connections with other fields of mathematics and sketch the motivation behind the various concepts which are introduced.... What is particularly pleasant is the fact that the authors are quite successful in giving to the reader the feeling behind the demonstrations which are sketched. Another point to notice is the existence of an annotated extended bibliography and a very complete index. This really enhances the value of this book and puts it at the level of a particularly interesting reference tool. I thus strongly recommend to buy this very interesting and stimulating book." Journal de Physique

Perturbation Theory

Perturbation Theory PDF Author: Giuseppe Gaeta
Publisher: Springer Nature
ISBN: 1071626213
Category : Science
Languages : en
Pages : 601

Get Book Here

Book Description
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, is devoted to the fundamentals of Perturbation Theory (PT) as well as key applications areas such as Classical and Quantum Mechanics, Celestial Mechanics, and Molecular Dynamics. Less traditional fields of application, such as Biological Evolution, are also discussed. Leading scientists in each area of the field provide a comprehensive picture of the landscape and the state of the art, with the specific goal of combining mathematical rigor, explicit computational methods, and relevance to concrete applications. New to this edition are chapters on Water Waves, Rogue Waves, Multiple Scales methods, legged locomotion, Condensed Matter among others, while all other contributions have been revised and updated. Coverage includes the theory of (Poincare’-Birkhoff) Normal Forms, aspects of PT in specific mathematical settings (Hamiltonian, KAM theory, Nekhoroshev theory, and symmetric systems), technical problems arising in PT with solutions, convergence of series expansions, diagrammatic methods, parametric resonance, systems with nilpotent real part, PT for non-smooth systems, and on PT for PDEs [write out this acronym partial differential equations]. Another group of papers is focused specifically on applications to Celestial Mechanics, Quantum Mechanics and the related semiclassical PT, Quantum Bifurcations, Molecular Dynamics, the so-called choreographies in the N-body problem, as well as Evolutionary Theory. Overall, this unique volume serves to demonstrate the wide utility of PT, while creating a foundation for innovations from a new generation of graduate students and professionals in Physics, Mathematics, Mechanics, Engineering and the Biological Sciences.

Differential Equations

Differential Equations PDF Author: Shair Ahmad
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110652862
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
This book is mainly intended as a textbook for students at the Sophomore-Junior level, majoring in mathematics, engineering, or the sciences in general. The book includes the basic topics in Ordinary Differential Equations, normally taught in an undergraduate class, as linear and nonlinear equations and systems, Bessel functions, Laplace transform, stability, etc. It is written with ample exibility to make it appropriate either as a course stressing applications, or a course stressing rigor and analytical thinking. This book also offers sufficient material for a one-semester graduate course, covering topics such as phase plane analysis, oscillation, Sturm-Liouville equations, Euler-Lagrange equations in Calculus of Variations, first and second order linear PDE in 2D. There are substantial lists of exercises at the ends of chapters. A solutions manual, containing complete and detailed solutions to all the exercises in the book, is available to instructors who adopt the book for teaching their classes.

Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations PDF Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 1461210372
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.

Differential Equations

Differential Equations PDF Author: Antonio Ambrosetti
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111185672
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
The first part of this book is mainly intended as a textbook for students at the Sophomore-Junior level, majoring in mathematics, engineering, or the sciences in general. The book includes the basic topics in Ordinary Differential Equations, normally taught at the undergraduate level, such as linear and nonlinear equations and systems, Bessel functions, Laplace transform, stability, etc. It is written with ample flexibility to make it appropriate either as a course stressing application, or a course stressing rigor and analytical thinking. It also offers sufficient material for a one-semester graduate course, covering topics such as phase plane analysis, oscillation, Sturm-Liouville equations, Euler-Lagrange equations in Calculus of Variations, first and second order linear PDE in 2D. There are substantial lists of exercises at the ends of the chapters. In this edition complete solutions to all even number problems are given in the back of the book. The 2nd edition also includes some new problems and examples. An effort has been made to make the material more suitable and self-contained for undergraduate students with minimal knowledge of Calculus. For example, a detailed review of matrices and determinants has been added to the chapter on systems of equations. The second edition also contains corrections of some misprints and errors in the first edition.

Ordinary Differential Equations and Calculus of Variations

Ordinary Differential Equations and Calculus of Variations PDF Author: M. V. Makarets
Publisher: World Scientific
ISBN: 9810221916
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
This problem book contains exercises for courses in differential equations and calculus of variations at universities and technical institutes. It is designed for non-mathematics students and also for scientists and practicing engineers who feel a need to refresh their knowledge. The book contains more than 260 examples and about 1400 problems to be solved by the students ? much of which have been composed by the authors themselves. Numerous references are given at the end of the book to furnish sources for detailed theoretical approaches, and expanded treatment of applications.

Algebraic and Geometric Aspects of Integrable Systems and Random Matrices

Algebraic and Geometric Aspects of Integrable Systems and Random Matrices PDF Author: Anton Dzhamay
Publisher: American Mathematical Soc.
ISBN: 0821887475
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, held from January 6-7, 2012, in Boston, MA. The very wide range of topics represented in this volume illustrates