Author: Emad Solouma
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 14
Book Description
In this paper, some geometric properties of equiform Smarandache ruled surfaces in Minkowski space E13 using an equiform frame are investigated. Also, we give the sufficient conditions that make these surfaces are equiform developable and equiform minimal related to the equiform curvatures and when the equiform base curve contained in a plane or general helix. Finally, we provide an example, such as these surfaces.
On Geometry of Equiform Smarandache Ruled Surfaces via Equiform Frame in Minkowski 3-Space
Author: Emad Solouma
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 14
Book Description
In this paper, some geometric properties of equiform Smarandache ruled surfaces in Minkowski space E13 using an equiform frame are investigated. Also, we give the sufficient conditions that make these surfaces are equiform developable and equiform minimal related to the equiform curvatures and when the equiform base curve contained in a plane or general helix. Finally, we provide an example, such as these surfaces.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 14
Book Description
In this paper, some geometric properties of equiform Smarandache ruled surfaces in Minkowski space E13 using an equiform frame are investigated. Also, we give the sufficient conditions that make these surfaces are equiform developable and equiform minimal related to the equiform curvatures and when the equiform base curve contained in a plane or general helix. Finally, we provide an example, such as these surfaces.
Investigation of Special Type-Π Smarandache Ruled Surfaces Due to Rotation Minimizing Darboux Frame
Author: Emad Solouma
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 19
Book Description
This study begins with the construction of type-Π Smarandache ruled surfaces, whose base curves are Smarandache curves derived by rotation-minimizing Darboux frame vectors of the curve in E3. The direction vectors of these surfaces are unit vectors that convert Smarandache curves. The Gaussian and mean curvatures of the generated ruled surfaces are then separately calculated, and the surfaces are required to be minimal or developable. We report our main conclusions in terms of the angle between normal vectors and the relationship between normal curvature and geodesic curvature. For every surface, examples are provided, and the graphs of these surfaces are produced.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 19
Book Description
This study begins with the construction of type-Π Smarandache ruled surfaces, whose base curves are Smarandache curves derived by rotation-minimizing Darboux frame vectors of the curve in E3. The direction vectors of these surfaces are unit vectors that convert Smarandache curves. The Gaussian and mean curvatures of the generated ruled surfaces are then separately calculated, and the surfaces are required to be minimal or developable. We report our main conclusions in terms of the angle between normal vectors and the relationship between normal curvature and geodesic curvature. For every surface, examples are provided, and the graphs of these surfaces are produced.
Pointwise 1-Type Gauss Map os Developable Smarandache Rules Surfaces
Author: Stuti Tamta
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 19
Book Description
In this paper, we study the developable TN, TB, and NB-Smarandache ruled surface with a pointwise 1-type Gauss map. In particular, we obtain that every developable TN-Smarandache ruled surface has constant mean curvature, and every developable TB-Smarandache ruled surface is minimal if and only if the curve is a place curve with non-zero curvature or a helix, and every developable NB-Smarandache ruled surface is always plane. We also provide some examples.
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 19
Book Description
In this paper, we study the developable TN, TB, and NB-Smarandache ruled surface with a pointwise 1-type Gauss map. In particular, we obtain that every developable TN-Smarandache ruled surface has constant mean curvature, and every developable TB-Smarandache ruled surface is minimal if and only if the curve is a place curve with non-zero curvature or a helix, and every developable NB-Smarandache ruled surface is always plane. We also provide some examples.
Smarandache Geometries & Map Theories with Applications (I) [English and Chinese]
Author: Linfan Mao
Publisher: Infinite Study
ISBN: 1599730197
Category : Mathematics
Languages : en
Pages : 215
Book Description
800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Smarandache Geometries as generalizations of Finsler, Riemannian, Weyl, and Kahler Geometries. A Smarandache geometry (SG) is a geometry which has at least one smarandachely denied axiom (1969). An axiom is said smarandachely denied (S-denied) if in the same space the axiom behaves differently (i.e., validated and invalided; or only invalidated but in at least two distinct ways). Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries may be united altogether, in the same space, by some SGs. These last geometries can be partially Euclidean and partially non-Euclidean. The novelty of the SG is the fact that they introduce for the first time the degree of negation in geometry, similarly to the degree of falsehood in fuzzy or neutrosophic logic. For example an axiom can be denied in percentage of 30 Also SG are defined on multispaces, i.e. unions of Euclidean and non-Euclidean subspaces, or unions of distinct non-Euclidean spaces. As an example of S-denying, a proposition , which is the conjunction of a set i of propositions, can be invalidated in many ways if it is minimally unsatisfiable, that is, such that the conjunction of any proper subset of the i is satisfied in a structure, but itself is not. Here it is an example of what it means for an axiom to be invalidated in multiple ways [2] : As a particular axiom let's take Euclid's Fifth Postulate. In Euclidean or parabolic geometry a line has one parallel only through a given point. In Lobacevskian or hyperbolic geometry a line has at least two parallels through a given point. In Riemannian or elliptic geometry a line has no parallel through a given point. Whereas in Smarandache geometries there are lines which have no parallels through a given point and other lines which have one or more parallels through a given point (the fifth postulate is invalidated in many ways). Therefore, the Euclid's Fifth Postulate (which asserts that there is only one parallel passing through an exterior point to a given line) can be invalidated in many ways, i.e. Smarandachely denied, as follows: - first invalidation: there is no parallel passing through an exterior point to a given line; - second invalidation: there is a finite number of parallels passing through an exterior point to a given line; - third invalidation: there are infinitely many parallels passing through an exterior point to a given line.
Publisher: Infinite Study
ISBN: 1599730197
Category : Mathematics
Languages : en
Pages : 215
Book Description
800x600 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Smarandache Geometries as generalizations of Finsler, Riemannian, Weyl, and Kahler Geometries. A Smarandache geometry (SG) is a geometry which has at least one smarandachely denied axiom (1969). An axiom is said smarandachely denied (S-denied) if in the same space the axiom behaves differently (i.e., validated and invalided; or only invalidated but in at least two distinct ways). Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries may be united altogether, in the same space, by some SGs. These last geometries can be partially Euclidean and partially non-Euclidean. The novelty of the SG is the fact that they introduce for the first time the degree of negation in geometry, similarly to the degree of falsehood in fuzzy or neutrosophic logic. For example an axiom can be denied in percentage of 30 Also SG are defined on multispaces, i.e. unions of Euclidean and non-Euclidean subspaces, or unions of distinct non-Euclidean spaces. As an example of S-denying, a proposition , which is the conjunction of a set i of propositions, can be invalidated in many ways if it is minimally unsatisfiable, that is, such that the conjunction of any proper subset of the i is satisfied in a structure, but itself is not. Here it is an example of what it means for an axiom to be invalidated in multiple ways [2] : As a particular axiom let's take Euclid's Fifth Postulate. In Euclidean or parabolic geometry a line has one parallel only through a given point. In Lobacevskian or hyperbolic geometry a line has at least two parallels through a given point. In Riemannian or elliptic geometry a line has no parallel through a given point. Whereas in Smarandache geometries there are lines which have no parallels through a given point and other lines which have one or more parallels through a given point (the fifth postulate is invalidated in many ways). Therefore, the Euclid's Fifth Postulate (which asserts that there is only one parallel passing through an exterior point to a given line) can be invalidated in many ways, i.e. Smarandachely denied, as follows: - first invalidation: there is no parallel passing through an exterior point to a given line; - second invalidation: there is a finite number of parallels passing through an exterior point to a given line; - third invalidation: there are infinitely many parallels passing through an exterior point to a given line.
Differential Geometry
Author: Wolfgang Kühnel
Publisher: American Mathematical Soc.
ISBN: 0821839888
Category : Mathematics
Languages : en
Pages : 394
Book Description
Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.
Publisher: American Mathematical Soc.
ISBN: 0821839888
Category : Mathematics
Languages : en
Pages : 394
Book Description
Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.
Combinatorial Geometry with Applications to Field Theory, Second Edition, graduate textbook in mathematics
Author: Linfan Mao
Publisher: Infinite Study
ISBN: 159973155X
Category : Combinatorial geometry
Languages : en
Pages : 502
Book Description
Publisher: Infinite Study
ISBN: 159973155X
Category : Combinatorial geometry
Languages : en
Pages : 502
Book Description
Oscillation Theory of Delay Differential Equations
Author: I. Győri
Publisher: Clarendon Press
ISBN:
Category : Mathematics
Languages : en
Pages : 392
Book Description
In recent years there has been a resurgence of interest in the study of delay differential equations motivated largely by new applications in physics, biology, ecology, and physiology. The aim of this monograph is to present a reasonably self-contained account of the advances in the oscillation theory of this class of equations. Throughout, the main topics of study are shown in action, with applications to such diverse problems as insect population estimations, logistic equations in ecology, the survival of red blood cells in animals, integro-differential equations, and the motion of the tips of growing plants. The authors begin by reviewing the basic theory of delay differential equations, including the fundamental results of existence and uniqueness of solutions and the theory of the Laplace and z-transforms. Little prior knowledge of the subject is required other than a firm grounding in the main techniques of differential equation theory. As a result, this book provides an invaluable reference to the recent work both for mathematicians and for all those whose research includes the study of this fascinating class of differential equations.
Publisher: Clarendon Press
ISBN:
Category : Mathematics
Languages : en
Pages : 392
Book Description
In recent years there has been a resurgence of interest in the study of delay differential equations motivated largely by new applications in physics, biology, ecology, and physiology. The aim of this monograph is to present a reasonably self-contained account of the advances in the oscillation theory of this class of equations. Throughout, the main topics of study are shown in action, with applications to such diverse problems as insect population estimations, logistic equations in ecology, the survival of red blood cells in animals, integro-differential equations, and the motion of the tips of growing plants. The authors begin by reviewing the basic theory of delay differential equations, including the fundamental results of existence and uniqueness of solutions and the theory of the Laplace and z-transforms. Little prior knowledge of the subject is required other than a firm grounding in the main techniques of differential equation theory. As a result, this book provides an invaluable reference to the recent work both for mathematicians and for all those whose research includes the study of this fascinating class of differential equations.
Law of Included Multiple-Middle & Principle of Dynamic Neutrosophic Opposition
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 159973303X
Category : Neutrosophic logic
Languages : en
Pages : 136
Book Description
In this book the author pledges for the generalization of the Lupasco-Nicolescu’s Law of Included Middle [,, and a third value which resolves their contradiction at another level of reality] to the Law of Included Multiple-Middle [, , and , where is split into a multitude of neutralities between and , such as , , etc.]. The value (i.e. neutrality or indeterminacy related to ) actually comprises the included middle value. Further, similarly to the extension from dialectics to neutrosophy, the author extends the Principle of Dynamic Opposition [opposition between and ] to the Principle of Dynamic Neutrosophic Opposition [which means oppositions among , , and ]. Explanation: The following dialogues are a compilation of different dialogues I had – during the years – on neutrosophy and related topics with academic colleagues, mostly by email. As they were non-protocol dialogues, initially not intended for publication, I invented a fictional character (somehow resurrected from Plato’s dialogues), Filokratos, and put in his mouth opinions, ideas, questions, comments expressed by academic fellows, in a collective spirit. Many thanks to all friends and dialogue partners who paid attention to neutrosophy and connected areas.
Publisher: Infinite Study
ISBN: 159973303X
Category : Neutrosophic logic
Languages : en
Pages : 136
Book Description
In this book the author pledges for the generalization of the Lupasco-Nicolescu’s Law of Included Middle [,
Structures On Manifolds
Author: Masahiro Kon
Publisher: World Scientific
ISBN: 9814602809
Category :
Languages : en
Pages : 520
Book Description
Contents: Riemannian ManifoldsSubmanifolds of Riemannian ManifoldsComplex ManifoldsSubmanifolds of Kaehlerian ManifoldsContact ManifoldsSubmanifolds of Sasakian Manifoldsf-StructuresProduct ManifoldsSubmersions Readership: Mathematicians. Keywords:Riemannian Manifold;Submanifold;Complex Manifold;Contact Manifold;Kaehlerian Manifold;Sasakian Manifold;Anti-Invariant Submanifold;CR Submanifold;Contact CR Submanifold;Submersion
Publisher: World Scientific
ISBN: 9814602809
Category :
Languages : en
Pages : 520
Book Description
Contents: Riemannian ManifoldsSubmanifolds of Riemannian ManifoldsComplex ManifoldsSubmanifolds of Kaehlerian ManifoldsContact ManifoldsSubmanifolds of Sasakian Manifoldsf-StructuresProduct ManifoldsSubmersions Readership: Mathematicians. Keywords:Riemannian Manifold;Submanifold;Complex Manifold;Contact Manifold;Kaehlerian Manifold;Sasakian Manifold;Anti-Invariant Submanifold;CR Submanifold;Contact CR Submanifold;Submersion
Proceedings of the First International Conference on Difference Equations
Author: John R. Graef
Publisher: CRC Press
ISBN: 9782884491457
Category : Mathematics
Languages : en
Pages : 516
Book Description
The Eighth International Conference on Difference Equations and Applications was held at Masaryk University in Brno, Czech Republic. This volume comprises refereed papers presented at this conference. Initially published in 2005.
Publisher: CRC Press
ISBN: 9782884491457
Category : Mathematics
Languages : en
Pages : 516
Book Description
The Eighth International Conference on Difference Equations and Applications was held at Masaryk University in Brno, Czech Republic. This volume comprises refereed papers presented at this conference. Initially published in 2005.