Numerical Studies of Laminar and Turbulent Drag Reduction

Numerical Studies of Laminar and Turbulent Drag Reduction PDF Author: Ramakrishna Balasubramanian
Publisher:
ISBN:
Category : Laminar flow
Languages : en
Pages : 96

Get Book Here

Book Description

Numerical Studies of Laminar and Turbulent Drag Reduction

Numerical Studies of Laminar and Turbulent Drag Reduction PDF Author: Ramakrishna Balasubramanian
Publisher:
ISBN:
Category : Laminar flow
Languages : en
Pages : 96

Get Book Here

Book Description


Numerical Studies of Laminar and Turbulent Drag Reduction

Numerical Studies of Laminar and Turbulent Drag Reduction PDF Author: Ramakrishna Balasubramanian
Publisher:
ISBN:
Category : Laminar flow
Languages : en
Pages : 40

Get Book Here

Book Description


Numerical Studies of Laminar and Turbulent Drag Reduction

Numerical Studies of Laminar and Turbulent Drag Reduction PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781725106895
Category :
Languages : en
Pages : 34

Get Book Here

Book Description
Two-dimensional incompressible flow over wavy surfaces is studied numerically by spectral methods. Turbulence effects are modeled. Results for symmetric and asymmetric wave forms are presented. Effect of propagating surface waves on drag reduction is studied. Comparisons between computer simulations and experimental results are made. Balasubramanian, R. and Orszag, S. A. Unspecified Center NASA-CR-3498, CHI-57 NAS1-16237...

Numerical Studies of Laminar and Turbulent Drag Reduction

Numerical Studies of Laminar and Turbulent Drag Reduction PDF Author: R. Balasubramanian
Publisher:
ISBN:
Category : Laminar flow
Languages : en
Pages : 40

Get Book Here

Book Description


Numerical Studies of Laminar and Turbulent Drag Reduction, Part 2

Numerical Studies of Laminar and Turbulent Drag Reduction, Part 2 PDF Author: R. Balasubramanian
Publisher:
ISBN:
Category :
Languages : en
Pages : 96

Get Book Here

Book Description


Viscous Drag Reduction in Boundary Layers

Viscous Drag Reduction in Boundary Layers PDF Author:
Publisher: AIAA
ISBN: 9781600863783
Category : Boundary layer
Languages : en
Pages : 542

Get Book Here

Book Description


Turbulent Drag Reduction by Surfactant Additives

Turbulent Drag Reduction by Surfactant Additives PDF Author: Feng-Chen Li
Publisher: John Wiley & Sons
ISBN: 1118181115
Category : Science
Languages : en
Pages : 233

Get Book Here

Book Description
Turbulent drag reduction by additives has long been a hot research topic. This phenomenon is inherently associated with multifold expertise. Solutions of drag-reducing additives are usually viscoelastic fluids having complicated rheological properties. Exploring the characteristics of drag-reduced turbulent flows calls for uniquely designed experimental and numerical simulation techniques and elaborate theoretical considerations. Pertinently understanding the turbulent drag reduction mechanism necessities mastering the fundamentals of turbulence and establishing a proper relationship between turbulence and the rheological properties induced by additives. Promoting the applications of the drag reduction phenomenon requires the knowledge from different fields such as chemical engineering, mechanical engineering, municipal engineering, and so on. This book gives a thorough elucidation of the turbulence characteristics and rheological behaviors, theories, special techniques and application issues for drag-reducing flows by surfactant additives based on the state-of-the-art of scientific research results through the latest experimental studies, numerical simulations and theoretical analyses. Covers turbulent drag reduction, heat transfer reduction, complex rheology and the real-world applications of drag reduction Introduces advanced testing techniques, such as PIV, LDA, and their applications in current experiments, illustrated with multiple diagrams and equations Real-world examples of the topic’s increasingly important industrial applications enable readers to implement cost- and energy-saving measures Explains the tools before presenting the research results, to give readers coverage of the subject from both theoretical and experimental viewpoints Consolidates interdisciplinary information on turbulent drag reduction by additives Turbulent Drag Reduction by Surfactant Additives is geared for researchers, graduate students, and engineers in the fields of Fluid Mechanics, Mechanical Engineering, Turbulence, Chemical Engineering, Municipal Engineering. Researchers and practitioners involved in the fields of Flow Control, Chemistry, Computational Fluid Dynamics, Experimental Fluid Dynamics, and Rheology will also find this book to be a much-needed reference on the topic.

Laminar Drag Reduction

Laminar Drag Reduction PDF Author: Keizo Watanabe
Publisher: Bentham Science Publishers
ISBN: 1681080842
Category : Technology & Engineering
Languages : en
Pages : 107

Get Book Here

Book Description
The phenomenon of resistance to motion through a fluid is believed to be a function of fluid-wall interaction. This theory is based on the assumption that under certain conditions a real fluid does not usually slip on the wall in contact with it and displays laminar flow. This set of conditions is known as a ‘no slip boundary condition’. But if a fluid is passed alongside a wall, the drag reduction in the laminar flow region can be calculated. In Laminar Drag Reduction, the frictional drag of an internal or an external fluid flow along a certain kind of hydrophobic wall is investigated. An analytic approach towards the mechanism of drag reduction is employed using Navier-Stokes existence and smoothness equations. The experimental results presented in this book show that frictional drag of a fluid alongside this hydrophobic wall decreases in comparison with fluid flow along a conventional wall or surface. This form of laminar drag reduction represents a relatively new area of research, where the laminar flow can be controlled by microscopic surface modifications, allowing fluid flows to slip over a wall. Laminar Drag Reduction brings information about some interesting phenomena related to fluid slippage on a highly water-repellent surface. Readers, physics graduates and senior researchers alike, can benefit from the information presented in this book to tackle more challenging questions in fluid mechanics research.

Aerodynamic Drag Reduction Technologies

Aerodynamic Drag Reduction Technologies PDF Author: Peter Thiede
Publisher: Springer Science & Business Media
ISBN: 3540453598
Category : Technology & Engineering
Languages : en
Pages : 382

Get Book Here

Book Description
------------------------------------------------------------ This volume contains the Proceedings of the CEAS/DragNet European Drag Reduction Conference held on 19-21 June 2000 in Potsdam, Germany. This conference, succeeding the European Fora on Laminar Flow Technology 1992 and 1996, was initiated by the European Drag Reduction Network (DragNet) and organised by DGLR under the auspice of CEAS. The conference addressed the recent advances in all areas of drag reduction research, development, validation and demonstration including laminar flow technology, adaptive wing concepts, turbulent and induced drag reduction, separation control and supersonic flow aspects. This volume which comprises more than 40 conference papers is of particular interest to engineers, scientists and students working in the aeronautics industry, research establishments or academia.

Geometry Mediated Drag Reduction Using Riblets and Wrinkled Surface Textures

Geometry Mediated Drag Reduction Using Riblets and Wrinkled Surface Textures PDF Author: Shabnam Raayai Ardakani
Publisher:
ISBN:
Category :
Languages : en
Pages : 291

Get Book Here

Book Description
The surfaces of many plants and animals are covered with a variety of micro-textures such as ribs or 3D tubules which can control surface-mediated properties such as skin friction. Inspired by the drag reducing ability of these natural structures, especially the ribbed features on shark denticles, passive drag reduction strategies such as micro-fabricated riblet surfaces have been developed and studied. Microgroove textures on the surface of objects such as hulls, wings or inner surface of pipes which are aligned in the stream-wise direction have been shown to reduce the wall friction by 4 − 8%. The mechanisms suggested for this form of drag reduction are viscous retardation of the flow in the grooves (both laminar and turbulent) and the displacement of vortical structures away from the wall in turbulent flows. Due to their effectiveness in altering the boundary layer structure and reducing the viscous drag force, use of riblets have been banned in various competitions such as the America’s Cup. The current thesis work is partly focused on theoretical and numerical modelling (using the open source CFD package OpenFOAM) of the evolution of viscous boundary layers in the presence of various-shaped riblets (V-grooves as well as sinusoidal wrinkled surfaces) in high Reynolds laminar flow. We explore the effect of the dimensionless height to spacing of the grooves (aspect ratio) as well as the length of the wetted surface in the streamwise direction and how these change the total drag compared with a corresponding flat wall. We show that riblets retard the viscous flow inside the grooves and reduce the shear stress inside the grooves. But for this reduction to result in overall drag reduction, the riblet wall needs to be longer than a critical length. The total drag reduction achieved is a non-monotonic function of the aspect ratio of the riblets, with aspect ratios of order unity offering the largest reduction in the total drag. To eliminate the role of entrance effects, we additionally investigate the effect of stream-wise aligned riblet structures on fully-developed Taylor-Couette flow. We perform both experimental studies as well as time-dependent numerical simulations in both the laminar Couette and the Taylor vortex regime. We again explore the effect of the size of the riblets with respect to the geometry of the Taylor-Couette cell, as well as the aspect ratio of the riblet grooves and the shape of the grooves (V-groove, Rectangular, semi-circular, etc.). For the experiments, the cylindrical textured rotors are fabricated using 3D printing techniques and the rest of the Taylor-Couette cell is custom built using CNC machining. The test cell is then aligned and mounted on a stress-controlled rheometer to measure the velocity and the torque on the rotating inner cylinder. The numerical studies are performed using the open source CFD software package OpenFOAM to compare results and understand the physical mechanisms contributing to this drag reduction phenomenon. Again we observe a non-monotonic behavior for the reduction in torque as a function of the aspect ratio of the riblets tested, similar to the trend observed in the boundary layer analysis and we discuss the effect of changing the geometry of the flow as well as the riblet spacing on the changes in the total torque. When viewed holistically the results of these two studies show that, through careful design, a net reduction in viscous drag force can be robustly realized on micro-textured surfaces in high Reynolds number laminar flows through complex changes in near-wall stream-wise velocity profiles even in the absence of turbulent effects. The understanding of these changes can be effective in guiding the design of internal flows (pipes or ducts) and external flows (such as ship hulls, micro air vehicles or unmanned underwater vehicles) that are tailored and optimized to result in low frictional drag over the entire wetted surface in both laminar and turbulent regions.