Numerical Simulations of Steady and Unsteady Oblique Detonation Phenomena with Application to Propulsion

Numerical Simulations of Steady and Unsteady Oblique Detonation Phenomena with Application to Propulsion PDF Author: Matthew John Grismer
Publisher:
ISBN:
Category :
Languages : en
Pages : 450

Get Book Here

Book Description

Numerical Simulations of Steady and Unsteady Oblique Detonation Phenomena with Application to Propulsion

Numerical Simulations of Steady and Unsteady Oblique Detonation Phenomena with Application to Propulsion PDF Author: Matthew John Grismer
Publisher:
ISBN:
Category :
Languages : en
Pages : 450

Get Book Here

Book Description


Application of Steady and Unsteady Detonation Waves to Propulsion

Application of Steady and Unsteady Detonation Waves to Propulsion PDF Author: Eric Wintenberger
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 604

Get Book Here

Book Description


Gaseous Detonation Physics and Its Universal Framework Theory

Gaseous Detonation Physics and Its Universal Framework Theory PDF Author: Zonglin Jiang
Publisher: Springer Nature
ISBN: 9811970025
Category : Science
Languages : en
Pages : 281

Get Book Here

Book Description
This book highlights the theories and research progress in gaseous detonation research, and proposes a universal framework theory that overcomes the current research limitations. Gaseous detonation is an extremely fast type of combustion that propagates at supersonic speed in premixed combustible gas. Being self-sustaining and self-organizing with the unique nature of pressure gaining, gaseous detonation and its gas dynamics has been an interdisciplinary frontier for decades. The research of detonation enjoyed its early success from the development of the CJ theory and ZND modeling, but phenomenon is far from being understood quantitatively, and the development of theories to predict the three-dimensional cellular structure remains a formidable task, being essentially a problem in high-speed compressible reacting flow. This theory proposed by the authors’ research group breaks down the limitation of the one-dimensional steady flow hypothesis of the early theories, successfully correlating the propagation and initiation processes of gaseous detonation, and realizing the unified expression of the three-dimensional structure of cell detonation. The book and the proposed open framework is of high value for researchers in conventional applications such as coal mine explosions and chemical plant accidents, and state-of-the-art research fields such as supernova explosion, new aerospace propulsion engines, and detonation-driven hypersonic testing facilities. It is also a driving force for future research of detonation.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 868

Get Book Here

Book Description


Numerical Simulation of Unsteady Combustion and Detonation Phenomena

Numerical Simulation of Unsteady Combustion and Detonation Phenomena PDF Author: A. A. Boni
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Combustion in High-Speed Flows

Combustion in High-Speed Flows PDF Author: John Buckmaster
Publisher: Springer Science & Business Media
ISBN: 9401110506
Category : Technology & Engineering
Languages : en
Pages : 639

Get Book Here

Book Description
This volume contains the proceedings of the Workshop on Com bustion, sponsored by the Institute for Computer Applications in Science and Engineering (ICASE) and the NASA Langley Research Center (LaRC). It was held on October 12-14, 1992, and was the sec ond workshop in the series on the subject. The first was held in 1989, and its proceedings were published by Springer-Verlag under the title "Major Research Topics in Combustion," edited by M. Y. Hussaini, A. Kumar, and R. G. Voigt. The focus of the second workshop was directed towards the development, analysis, and application of basic models in high speed propulsion of particular interest to NASA. The exploration of a dual approach combining asymptotic and numerical methods for the analysis of the models was particularly encouraged. The objectives of this workshop were i) the genesis of models that would capture or reflect the basic pllysical phenomena in SCRAMJETs and/or oblique detonation-wave engines (ODWE), and ii) the stimulation of a greater interaction between NASA exper imental research community and the academic community. The lead paper by D. Bushnell on the status and issues of high speed propulsion relevant to both the SCRAMJET and the ODWE parallels his keynote address which set the stage of the workshop. Following the lead paper were five technical sessions with titles and chairs: Experiments (C. Rogers), Reacting Free Shear Layers (C. E. Grosch), Detonations (A. K. Kapila), Ignition and Struc ture (J. Buckmaster), and Unsteady Behaviour ('1'. L. Jackson).

Detonation Control for Propulsion

Detonation Control for Propulsion PDF Author: Jiun-Ming Li
Publisher: Springer
ISBN: 3319689061
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world’s first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.

The Detonation Phenomenon

The Detonation Phenomenon PDF Author: John H. S. Lee
Publisher: Cambridge University Press
ISBN: 1139473204
Category : Technology & Engineering
Languages : en
Pages : 389

Get Book Here

Book Description
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead of and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.

Numerical Modeling of Explosives and Propellants, Second Edition

Numerical Modeling of Explosives and Propellants, Second Edition PDF Author: Charles L. Mader
Publisher: CRC Press
ISBN: 9780849331497
Category : Technology & Engineering
Languages : en
Pages : 456

Get Book Here

Book Description
Charles Mader, a leading scientist who conducted theoretical research at Los Alamos National Laboratory for more than 30 years, sets a new standard with this reference on numerical modeling of explosives and propellants. This book updates and expands the information presented in the author's landmark work, Numerical Modeling of Detonations, published in 1979 and still in use today. Numerical Modeling of Explosives and Propellants incorporates the considerable changes the personal computer has brought to numerical modeling since the first book was published, and includes new three-dimensional modeling techniques and new information on propellant performance and vulnerability. Both an introduction to the physics and chemistry of explosives and propellants and a guide to numerical modeling of detonation and reactive fluid dynamics, Numerical Modeling of Explosives and Propellants offers scientists and engineers a complete picture of the current state of explosive and propellant technology and numerical modeling. The book is richly illustrated with figures that support the concepts, and filled with tables for quick access to precise data. The accompanying CD-ROM contains computer codes that are the national standard by which modeling is evaluated. Dynamic material properties data files and animation files are also included. There is no other book available today that offers this vital information.

Numerical Simulation of Pulse Detonation Phenomena in a Parallel Environment

Numerical Simulation of Pulse Detonation Phenomena in a Parallel Environment PDF Author: Prashaanth Ravindran
Publisher:
ISBN: 9780542467868
Category : Aerospace engineering
Languages : en
Pages :

Get Book Here

Book Description
The objective of this work was to develop a parallel algorithm that would be used in the simulation of the detonation process in the chamber of a pulse detonation engine. The emphasis is laid on reducing computation time while maintaining the accuracy of the solution and subsequently developing a numerical solution to be in agreement with real-world physical characteristics of a detonation wave initiation, build-up and progression. The flow is assumed to be unsteady, inviscid and non heat conducting. To adhere to real time effects, the flow equations are coupled with finite rate chemistry and the vibrational energy equation are based on a two-temperature model, to account for possible vibrational non-equilibrium. Finite Volume formulation is employed to ensure conservation and to allow proper handling of discontinuities. Runge-Kutta integration scheme has been utilized to obtain a time-accurate solution, with Roes flux difference splitting scheme applied to cell face fluxes. For higher-order spatial accuracy, MUSCL technique is employed. Equation stiffness has been taken care of by observing point implicit treatment of the source terms and detonation is initiated with the application of a localized hot-spot. The parallel algorithm has been developed using Message Passing Interface standard developed by the Argonne National Laboratory for the purposes of solving equations in a distributed environment. A proto-cluster of Beowulf type consisting of 8-nodes has been assembled and made operational, and an algorithm which performs space-time calculations simultaneously on the nodes has been successfully developed. A two-step global model for Hydrogen-Air mixture has been selected for validating the parallel algorithm with existing results, to establish veracity and accuracy while reducing computation time to almost a fourth. Excellent agreement has been found on comparison of the results with the same code when solved in a single processor.