Numerical Simulation and Optimization of Carbon Dioxide Utilization and Storage in Enhanced Gas Recovery and Enhanced Geothermal Systems

Numerical Simulation and Optimization of Carbon Dioxide Utilization and Storage in Enhanced Gas Recovery and Enhanced Geothermal Systems PDF Author: James H. Biagi
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 75

Get Book Here

Book Description
With rising concerns surrounding CO2 emissions from fossil fuel power plants, there has been a strong emphasis on the development of safe and economical Carbon Capture Utilization and Storage (CCUS) technology. Two methods that show the most promise are Enhanced Gas Recovery (EGR) and Enhanced Geothermal Systems (EGS). In Enhanced Gas Recovery a depleted or depleting natural gas reservoir is re-energized with high pressure CO2 to increase the recovery factor of the gas. As an additional benefit following the extraction of natural gas, the reservoir would serve as a long-term storage vessel for the captured carbon. CO2 based Enhanced Geothermal Systems seek to increase the heat extracted from a given geothermal reservoir by using CO2 as a working fluid. Carbon sequestration is accomplished as a result of fluid losses throughout the life of the geothermal system. Although these technologies are encouraging approaches to help in the mitigation of anthropogenic CO2 emissions, the detailed mechanisms involved are not fully understood. There remain uncertainties in the efficiency of the systems over time, and the safety of the sequestered CO2 due to leakage. In addition, the efficiency of both natural gas extraction in EGR and heat extraction in EGS are highly dependent on the injection rate and injection pressure. Before large scale deployment of these technologies, it is important to maximize the extraction efficiency and sequestration capacity by optimizing the injection parameters. In this thesis, numerical simulations of subsurface flow in EGR and EGS are conducted using the DOE multiphase flow solver TOUGH2 (Transport of Unsaturated Groundwater and Heat). A previously developed multi-objective optimization code based on a genetic algorithm is modified for applications to EGR and EGS. For EGR study, a model problem based on a benchmark-study that compares various mathematical and numerical models for CO2 storage is considered. For EGS study a model problem based on previous studies (with parameters corresponding to the European EGS site at Soultz) is considered. The simulation results compare well with the computations of other investigators and give insight into the parameters that can influence the simulation accuracy. Optimizations for EGR and EGS problems are carried out with a genetic algorithm (GA) based optimizer combined with TOUGH2, designated as GA-TOUGH2. Validation of the optimizer was achieved by comparison of GA based optimization studies with the brute-force run of large number of simulations. Using GA-TOUGH2, optimal time-independent and time-dependent injection profiles were determined for both EGR and EGS. Optimization of EGR problem resulted in a larger natural gas production rate, a shorter total operation time, and an injection pressure well below the fracture pressure. Optimization of EGS problem resulted in a precise management of the production temperature profile, heat extraction for the entire well life, and more efficient utilization of CO2. The results of these studies will hopefully pave the way for future GA-TOUGH2 based optimization studies to improve the modeling of CCUS projects.

Numerical Simulation and Optimization of Carbon Dioxide Utilization and Storage in Enhanced Gas Recovery and Enhanced Geothermal Systems

Numerical Simulation and Optimization of Carbon Dioxide Utilization and Storage in Enhanced Gas Recovery and Enhanced Geothermal Systems PDF Author: James H. Biagi
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 75

Get Book Here

Book Description
With rising concerns surrounding CO2 emissions from fossil fuel power plants, there has been a strong emphasis on the development of safe and economical Carbon Capture Utilization and Storage (CCUS) technology. Two methods that show the most promise are Enhanced Gas Recovery (EGR) and Enhanced Geothermal Systems (EGS). In Enhanced Gas Recovery a depleted or depleting natural gas reservoir is re-energized with high pressure CO2 to increase the recovery factor of the gas. As an additional benefit following the extraction of natural gas, the reservoir would serve as a long-term storage vessel for the captured carbon. CO2 based Enhanced Geothermal Systems seek to increase the heat extracted from a given geothermal reservoir by using CO2 as a working fluid. Carbon sequestration is accomplished as a result of fluid losses throughout the life of the geothermal system. Although these technologies are encouraging approaches to help in the mitigation of anthropogenic CO2 emissions, the detailed mechanisms involved are not fully understood. There remain uncertainties in the efficiency of the systems over time, and the safety of the sequestered CO2 due to leakage. In addition, the efficiency of both natural gas extraction in EGR and heat extraction in EGS are highly dependent on the injection rate and injection pressure. Before large scale deployment of these technologies, it is important to maximize the extraction efficiency and sequestration capacity by optimizing the injection parameters. In this thesis, numerical simulations of subsurface flow in EGR and EGS are conducted using the DOE multiphase flow solver TOUGH2 (Transport of Unsaturated Groundwater and Heat). A previously developed multi-objective optimization code based on a genetic algorithm is modified for applications to EGR and EGS. For EGR study, a model problem based on a benchmark-study that compares various mathematical and numerical models for CO2 storage is considered. For EGS study a model problem based on previous studies (with parameters corresponding to the European EGS site at Soultz) is considered. The simulation results compare well with the computations of other investigators and give insight into the parameters that can influence the simulation accuracy. Optimizations for EGR and EGS problems are carried out with a genetic algorithm (GA) based optimizer combined with TOUGH2, designated as GA-TOUGH2. Validation of the optimizer was achieved by comparison of GA based optimization studies with the brute-force run of large number of simulations. Using GA-TOUGH2, optimal time-independent and time-dependent injection profiles were determined for both EGR and EGS. Optimization of EGR problem resulted in a larger natural gas production rate, a shorter total operation time, and an injection pressure well below the fracture pressure. Optimization of EGS problem resulted in a precise management of the production temperature profile, heat extraction for the entire well life, and more efficient utilization of CO2. The results of these studies will hopefully pave the way for future GA-TOUGH2 based optimization studies to improve the modeling of CCUS projects.

Numerical Simulation and Optimization of Carbon Dioxide Utilization for Enhanced Oil Recovery from Depleted Reservoirs

Numerical Simulation and Optimization of Carbon Dioxide Utilization for Enhanced Oil Recovery from Depleted Reservoirs PDF Author: Razi Safi
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 80

Get Book Here

Book Description
Due to concerns about rising CO2 emissions from fossil fuel power plants, there has been a strong emphasis on the development of a safe and economical method for Carbon Capture Utilization and Storage (CCUS). One area of current interest in CO2 utilization is the Enhanced Oil Recovery (EOR) from depleted reservoirs. In an Enhanced Oil Recovery system, a depleted or depleting oil reservoir is re-energized by injecting high-pressure CO2 to increase the recovery factor of the oil from the reservoir. An additional benefit beyond oil recovery is that the reservoir could also serve as a long-term storage vessel for the injected CO2. Although this technology is old, its application to depleted reservoirs is relatively recent because of its dual benefit of oil recovery and CO2 storage thereby making some contributions to the mitigation of anthropogenic CO2 emissions. Since EOR from depleted reservoirs using CO2 injection has been considered by the industry only recently, there are uncertainties in deployment that are not well understood, e.g. the efficiency of the EOR system over time, the safety of the sequestered CO2 due to possible leakage from the reservoir. Furthermore, it is well known that the efficiency of the oil extraction is highly dependent on the CO2 injection rate and the injection pressure. Before large scale deployment of this technology can occur, it is important to understand the mechanisms that can maximize the oil extraction efficiency as well as the CO2 sequestration capacity by optimizing the CO2 injection parameters, namely, the injection rate and the injection pressure. In this thesis, numerical simulations of subsurface flow in an EOR system is conducted using the DOE funded multiphase flow solver COZView/COZSim developed by Nitec, LLC. A previously developed multi-objective optimization code based on a genetic algorithm developed in the CFD laboratory of the Mechanical Engineering department of Washington University in St. Louis is modified for the use the COZView/COZSim software for optimization applications to EOR. In this study, two reservoirs are modeled. The first is based on a benchmark reservoir described in the COZSim tutorial; the second is a reservoir in the Permian Basin in Texas for which extensive data is available. In addition to pure CO2 injection, a Water Alternating Gas (WAG) injection scheme is also investigated for the same two reservoirs. Optimizations for EOR Constant Gas Injection (CGI) and WAG injection schemes are conducted with a genetic algorithm (GA) based optimizer combined with the simulation software COZSim. Validation of the obtained multi-objective optimizer was achieved by comparing its results with the results obtained from the built-in optimization function within the COZView graphic user interface. Using our GA based optimizer, optimal constant-mass and pressure-limited injection profiles are determined for EOR. In addition, the use of recycled gas is also investigated. Optimization of the EOR problem results in an increased recovery factor with a more efficient utilization of injected CO2. The results of this study should help in paving the way for future optimization studies of other systems such as Enhanced Gas Recovery (EGR) and Enhanced Geothermal Systems (EGS) that are currently being investigated and considered for CCUS.

Clean Energy Systems in the Subsurface: Production, Storage and Conversion

Clean Energy Systems in the Subsurface: Production, Storage and Conversion PDF Author: Michael Z. Hou
Publisher: Springer Science & Business Media
ISBN: 3642378498
Category : Technology & Engineering
Languages : en
Pages : 487

Get Book Here

Book Description
Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group “Underground Storage of CO2 and Energy”, is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3rd Sino-German conference on the theme “Clean Energy Systems in the Subsurface: Production, Storage and Conversion”. This volume is a collection of diverse quality scientific works from different perspectives elucidating on the current developments in CO2 geologic sequestration research to reduce greenhouse emissions including measures to monitor surface leakage, groundwater quality and the integrity of caprock, while ensuring a sufficient supply of clean energy. The contributions herein have been structured into 6 major thematic research themes: Integrated Energy and Environmental Utilization of Geo-reservoirs: Law, Risk Management & Monitoring CO2 for Enhanced Gas and Oil Recovery, Coal Bedded Methane and Geothermal Systems Trapping Mechanisms and Multi-Barrier Sealing Systems for Long-Term CO2 Storage Coupled THMC-Processes and Numerical Modelling Rock Mechanical Behaviour Considering Cyclic Loading, Dilatancy, Damage, Self-sealing and Healing Underground Storage and Supply of Energy “Clean energy systems in the subsurface” will be invaluable to researchers, scientists and experts in both academia and industry trying to find a long lasting solution to the problems of global climate change, energy security and sustainability.

Cutting-Edge Technology for Carbon Capture, Utilization, and Storage

Cutting-Edge Technology for Carbon Capture, Utilization, and Storage PDF Author: Karine Ballerat-Busserolles
Publisher: John Wiley & Sons
ISBN: 1119363764
Category : Science
Languages : en
Pages : 337

Get Book Here

Book Description
Compiled from a conference on this important subject by three of the most well-known and respected editors in the industry, this volume provides some of the latest technologies related to carbon capture, utilization and, storage (CCUS). Of the 36 billon tons of carbon dioxide (CO2) being emitted into Earth's atmosphere every year, only 40 million tons are able to be captured and stored. This is just a fraction of what needs to be captured, if this technology is going to make any headway in the global march toward reversing, or at least reducing, climate change. CO2 capture and storage has long been touted as one of the leading technologies for reducing global carbon emissions, and, even though it is being used effectively now, it is still an emerging technology that is constantly changing. This volume, a collection of papers presented during the Cutting-Edge Technology for Carbon Capture, Utilization, and Storage (CETCCUS), held in Clermont-Ferrand, France in the fall of 2017, is dedicated to these technologies that surround CO2 capture. Written by some of the most well-known engineers and scientists in the world on this topic, the editors, also globally known, have chosen the most important and cutting-edge papers that address these issues to present in this groundbreaking new volume, which follows their industry-leading series, Advances in Natural Gas Engineering, a seven-volume series also available from Wiley-Scrivener. With the ratification of the Paris Agreement, many countries are now committing to making real progress toward reducing carbon emissions, and this technology is, as has been discussed for years, one of the most important technologies for doing that. This volume is a must-have for any engineer or scientist working in this field.

Engineering Aspects of Geologic CO2 Storage

Engineering Aspects of Geologic CO2 Storage PDF Author: Dayanand Saini
Publisher: Springer
ISBN: 3319560743
Category : Technology & Engineering
Languages : en
Pages : 85

Get Book Here

Book Description
This timely book explores the lessons learned in and potentials of injecting supercritical CO2 into depleted oil and gas reservoirs, in order to maximize both hydrocarbon recovery and the storage capacities of injected CO2. The author provides a detailed discussion of key engineering parameters of simultaneous CO2 enhanced oil recovery and CO2 storage in depleted hydrocarbon reservoirs. These include candidate site selection, CO2 oil miscibility, maximizing CO2-storage capacity in enhanced oil recovery operations, well configurations, and cap and reservoir rock integrity. The book will help practicing professionals devise strategies to curb greenhouse gas emissions from the use of fossil fuels for energy production via geologic CO2 storage, while developing CO2 injection as an economically viable and environmentally sensible business model for hydrocarbon exploration and production in a low carbon economy.

Numerical Simulation to Study the Feasibility of Using CO2 as a Stimulation Agent for Enhanced Geothermal Systems

Numerical Simulation to Study the Feasibility of Using CO2 as a Stimulation Agent for Enhanced Geothermal Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A major concern in the development of enhanced geothermal systems (EGS) is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths such as those caused by thermally-induced stress cracking. Past researches have tended to focus primarily on thermal and hydraulic stimulation. Recent studies suggest that chemical stimulation may improve the performance of EGS reservoirs. Geothermal injection wells are often drilled into formations containing reactive minerals such as calcite. Injecting aqueous chemical agents such as mineral acids, could be effective for mineral dissolution and porosity enhancement at distances of several meters around a well. An alternative to treatment with strong acids is the use of supercritical (SC) CO2 as stimulation agent for an aqueous-based EGS. Reactive transport modeling is used to investigate the effectiveness of this method. We used the thermal condition and mineralogical composition from a well of Desert Peak EGS site, to examine ways in which mixtures of water and CO2 can be injected to enhance porosity.

Numerical study of underground CO2 storage and the utilization in depleted gas reservoirs

Numerical study of underground CO2 storage and the utilization in depleted gas reservoirs PDF Author: Cheng Cao
Publisher: Cuvillier Verlag
ISBN: 3736963866
Category : Technology & Engineering
Languages : de
Pages : 200

Get Book Here

Book Description
Carbon capture and storage (CCS) is considered as the most promising technology for slowing down the atmospheric CO2 emissions. However, CCS has not been implemented on large scale because of the related risks and the lack of financial incentives. Regarding the risks associated with CCS, a parametric uncertainty analysis for CO2 storage was conducted and the general roles of different key geomechanical and hydrogeological parameters in response to CO2 injection were determined, which is beneficial for guiding time and effort spent mitigating the uncertainty to acquire trustworthy model forecasts and risk assessments. Regarding the financial incentives of CCS, co-injection of CO2 with impurities associated with enhanced gas recovery was analyzed, which is advantageous for decreasing the cost on gas separation and generating additional economic profit. In addition, the utilization of CO2 as cushion gas in the underground gas storage reservoir was proposed and analyzed, which can also be beneficial for improving the cost-effectiveness of CCS. Overall, this thesis is advantageous for promoting the application of CCS on large scale and mitigating the atmospheric CO2 emissions. Die Kohlenstoffabscheidung und –speicherung (CCS) gilt als die vielversprechendste Technologie zur Verlangsamung der atmosphärischen CO2–Emissionen. CCS wurde jedoch aufgrund der damit verbundenen Risiken und des Mangels an finanziellen Anreizen nicht in großem Umfang implementiert. In Bezug auf die mit CCS verbundenen Risiken wurde eine parametrische Unsicherheitsanalyse für die CO2-Speicherung durchgeführt und die allgemeinen Rollen verschiedener geomechanischer und hydrogeologischer Schlüsselparameter als Reaktion auf die CO2-Injektion ermittelt. Dies ist hilfreich, um den Zeit- und Arbeitsaufwand für die Minderung der Unsicherheit zu verringern, um vertrauenswürdig zu werden Modellprognosen und Risikobewertungen. In Bezug auf die finanziellen Anreize von CCS wurde die gleichzeitige Injektion von CO2 mit Verunreinigungen im Zusammenhang mit einer verbesserten Gasrückgewinnung analysiert. Dies ist vorteilhaft, um die Kosten für die Gastrennung zu senken und zusätzlichen wirtschaftlichen Gewinn zu erzielen. Darüber hinaus wurde die Verwendung von CO2 als Polstergas im unterirdischen Gasspeicher vorgeschlagen und analysiert, was auch zur Verbesserung der Wirtschaftlichkeit von CCS beitragen kann. Insgesamt ist diese These vorteilhaft, um die Anwendung von CCS in großem Maßstab zu fördern und die atmosphärischen CO2-Emissionen zu verringern.

Understanding Geologic Carbon Sequestration and Gas Hydrate from Molecular Simulation

Understanding Geologic Carbon Sequestration and Gas Hydrate from Molecular Simulation PDF Author: Yongchen Song
Publisher: Elsevier
ISBN: 0443217645
Category : Science
Languages : en
Pages : 544

Get Book Here

Book Description
The development, storage and comprehensive utilization of energy is an important subject concerned by scientists all over the world. Carbon capture and storage technology is one of the most effective mitigation technologies for global climate change, accurate understanding of the migration of multiphase fluids in reservoirs is crucial for reservoir stock evaluation and safety evaluation. Understanding Carbon Geologic Sequestration and Gas Hydrate from Molecular Simulation systematically introduces CO2 geological sequestration and gas hydrate at the molecular-scale, with research including interfacial properties of multiphase, multicomponent systems, hydrogen bonding properties, adsorption characteristics of CO2 / CH4 in the pore, kinetic properties of decomposition/nucleation/growth of gas hydrate, the influence of additives on gas hydrate growth dynamics, and hydrate prevention and control technology. This book focuses on research-based achievements and provides a comprehensive look at global progress in the field. Because there are limited resources available on carbon geologic sequestration technology and gas hydrate technology at the molecular level, the authors wrote this book to fill a gap in scientific literature and prompt further research. Distills learnings for fundamental and advanced knowledge of molecular simulation in carbon dioxide and gas hydrate storage Synthesizes knowledge about the development status of CGS technology and hydrate technology in the molecular field – tackling these technologies from a microscopic perspective Analyzes scientific problems related to CGS technology and hydrate technology based on molecular simulation methods Explores challenges relative to carbon dioxide and hydrate storage Provides hierarchical analysis combined with the authors’ own research-based case studies for enhanced comprehension and application

Data-Driven Analytics for the Geological Storage of CO2

Data-Driven Analytics for the Geological Storage of CO2 PDF Author: Shahab Mohaghegh
Publisher: CRC Press
ISBN: 1315280795
Category : Science
Languages : en
Pages : 308

Get Book Here

Book Description
Data-driven analytics is enjoying unprecedented popularity among oil and gas professionals. Many reservoir engineering problems associated with geological storage of CO2 require the development of numerical reservoir simulation models. This book is the first to examine the contribution of artificial intelligence and machine learning in data-driven analytics of fluid flow in porous environments, including saline aquifers and depleted gas and oil reservoirs. Drawing from actual case studies, this book demonstrates how smart proxy models can be developed for complex numerical reservoir simulation models. Smart proxy incorporates pattern recognition capabilities of artificial intelligence and machine learning to build smart models that learn the intricacies of physical, mechanical and chemical interactions using precise numerical simulations. This ground breaking technology makes it possible and practical to use high fidelity, complex numerical reservoir simulation models in the design, analysis and optimization of carbon storage in geological formations projects.

Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion

Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion PDF Author: Mohammad Reza Rahimpour
Publisher: Elsevier
ISBN: 0443190682
Category : Technology & Engineering
Languages : en
Pages : 556

Get Book Here

Book Description
Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion is a comprehensive seven-volume set of books that discusses the composition and properties of greenhouse gases, and introduces different sources of greenhouse gases emission and the relation between greenhouse gases and global warming. The comprehensive and detailed presentation of common technologies as well as novel research related to all aspects of greenhouse gases makes this work an indispensable encyclopedic resource for researchers in academia and industry.Volume 3 titled Greenhouse Gases Storage and Transportation investigates in detail the methods of storage and transportation, their current status, novel strategies, and the conventional challenges. The book consists of four sections, the first three of which include various strategies employed in the storage and transportation of the major greenhouse gases (GHGs), namely carbon dioxide, methane, and nitrous oxide. Each section addresses recent advances, new concepts, and the economic assessment of storage and transportation facilities. Section 4 surveys the challenges that storage and transportation of GHGs may face and delves into the major problems of the pipelines that are employed for the transportation of the materials Introduces different technologies for carbon storage and transportation Describes various methane storage and transportation technologies Discusses challenges of GHGs’ transportation