Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations PDF Author: David F. Griffiths
Publisher: Springer Science & Business Media
ISBN: 0857291483
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations PDF Author: David F. Griffiths
Publisher: Springer Science & Business Media
ISBN: 0857291483
Category : Mathematics
Languages : en
Pages : 274

Get Book Here

Book Description
Numerical Methods for Ordinary Differential Equations is a self-contained introduction to a fundamental field of numerical analysis and scientific computation. Written for undergraduate students with a mathematical background, this book focuses on the analysis of numerical methods without losing sight of the practical nature of the subject. It covers the topics traditionally treated in a first course, but also highlights new and emerging themes. Chapters are broken down into `lecture' sized pieces, motivated and illustrated by numerous theoretical and computational examples. Over 200 exercises are provided and these are starred according to their degree of difficulty. Solutions to all exercises are available to authorized instructors. The book covers key foundation topics: o Taylor series methods o Runge--Kutta methods o Linear multistep methods o Convergence o Stability and a range of modern themes: o Adaptive stepsize selection o Long term dynamics o Modified equations o Geometric integration o Stochastic differential equations The prerequisite of a basic university-level calculus class is assumed, although appropriate background results are also summarized in appendices. A dedicated website for the book containing extra information can be found via www.springer.com

Numerical Approximation of Ordinary Differential Problems

Numerical Approximation of Ordinary Differential Problems PDF Author: Raffaele D'Ambrosio
Publisher: Springer Nature
ISBN: 3031313437
Category : Mathematics
Languages : en
Pages : 391

Get Book Here

Book Description
This book is focused on the numerical discretization of ordinary differential equations (ODEs), under several perspectives. The attention is first conveyed to providing accurate numerical solutions of deterministic problems. Then, the presentation moves to a more modern vision of numerical approximation, oriented to reproducing qualitative properties of the continuous problem along the discretized dynamics over long times. The book finally performs some steps in the direction of stochastic differential equations (SDEs), with the intention of offering useful tools to generalize the techniques introduced for the numerical approximation of ODEs to the stochastic case, as well as of presenting numerical issues natively introduced for SDEs. The book is the result of an intense teaching experience as well as of the research carried out in the last decade by the author. It is both intended for students and instructors: for the students, this book is comprehensive and rather self-contained; for the instructors, there is material for one or more monographic courses on ODEs and related topics. In this respect, the book can be followed in its designed path and includes motivational aspects, historical background, examples and a software programs, implemented in Matlab, that can be useful for the laboratory part of a course on numerical ODEs/SDEs. The book also contains the portraits of several pioneers in the numerical discretization of differential problems, useful to provide a framework to understand their contributes in the presented fields. Last, but not least, rigor joins readability in the book.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations PDF Author: Kendall Atkinson
Publisher: John Wiley & Sons
ISBN: 1118164520
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Numerical Approximation Methods

Numerical Approximation Methods PDF Author: Harold Cohen
Publisher: Springer Science & Business Media
ISBN: 1441998365
Category : Mathematics
Languages : en
Pages : 493

Get Book Here

Book Description
This book presents numerical and other approximation techniques for solving various types of mathematical problems that cannot be solved analytically. In addition to well known methods, it contains some non-standard approximation techniques that are now formally collected as well as original methods developed by the author that do not appear in the literature. This book contains an extensive treatment of approximate solutions to various types of integral equations, a topic that is not often discussed in detail. There are detailed analyses of ordinary and partial differential equations and descriptions of methods for estimating the values of integrals that are presented in a level of detail that will suggest techniques that will be useful for developing methods for approximating solutions to problems outside of this text. The book is intended for researchers who must approximate solutions to problems that cannot be solved analytically. It is also appropriate for students taking courses in numerical approximation techniques.

Partial Differential Equations: Modeling, Analysis and Numerical Approximation

Partial Differential Equations: Modeling, Analysis and Numerical Approximation PDF Author: Hervé Le Dret
Publisher: Birkhäuser
ISBN: 3319270672
Category : Mathematics
Languages : en
Pages : 403

Get Book Here

Book Description
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.

Numerical Models for Differential Problems

Numerical Models for Differential Problems PDF Author: Alfio Quarteroni
Publisher: Springer Science & Business
ISBN: 8847055229
Category : Mathematics
Languages : en
Pages : 668

Get Book Here

Book Description
In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, and recommendable to those researchers in the academic and extra-academic domain who want to approach this interesting branch of applied mathematics.

Numerical Methods for Ordinary Differential Equations

Numerical Methods for Ordinary Differential Equations PDF Author: J. C. Butcher
Publisher: John Wiley & Sons
ISBN: 0470868260
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description
This new book updates the exceptionally popular Numerical Analysis of Ordinary Differential Equations. "This book is...an indispensible reference for any researcher."-American Mathematical Society on the First Edition. Features: * New exercises included in each chapter. * Author is widely regarded as the world expert on Runge-Kutta methods * Didactic aspects of the book have been enhanced by interspersing the text with exercises. * Updated Bibliography.

Numerical Solution Of Ordinary And Partial Differential Equations, The (3rd Edition)

Numerical Solution Of Ordinary And Partial Differential Equations, The (3rd Edition) PDF Author: Granville Sewell
Publisher: World Scientific
ISBN: 9814635111
Category : Mathematics
Languages : en
Pages : 346

Get Book Here

Book Description
This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A.The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions.The Windows version of PDE2D comes free with every purchase of this book. More information at www.pde2d.com/contact.

Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations PDF Author: Peter E. Kloeden
Publisher: Springer Science & Business Media
ISBN: 3662126168
Category : Mathematics
Languages : en
Pages : 666

Get Book Here

Book Description
The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP