Author: David Gottlieb
Publisher: SIAM
ISBN: 0898710235
Category : Technology & Engineering
Languages : en
Pages : 167
Book Description
A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.
Numerical Analysis of Spectral Methods
Author: David Gottlieb
Publisher: SIAM
ISBN: 0898710235
Category : Technology & Engineering
Languages : en
Pages : 167
Book Description
A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.
Publisher: SIAM
ISBN: 0898710235
Category : Technology & Engineering
Languages : en
Pages : 167
Book Description
A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.
Mathematics and the Aesthetic
Author: Nathalie Sinclair
Publisher: Springer Science & Business Media
ISBN: 0387381457
Category : Mathematics
Languages : en
Pages : 299
Book Description
This collection of essays explores the ancient affinity between the mathematical and the aesthetic, focusing on fundamental connections between these two modes of reasoning and communicating. From historical, philosophical and psychological perspectives, with particular attention to certain mathematical areas such as geometry and analysis, the authors examine ways in which the aesthetic is ever-present in mathematical thinking and contributes to the growth and value of mathematical knowledge.
Publisher: Springer Science & Business Media
ISBN: 0387381457
Category : Mathematics
Languages : en
Pages : 299
Book Description
This collection of essays explores the ancient affinity between the mathematical and the aesthetic, focusing on fundamental connections between these two modes of reasoning and communicating. From historical, philosophical and psychological perspectives, with particular attention to certain mathematical areas such as geometry and analysis, the authors examine ways in which the aesthetic is ever-present in mathematical thinking and contributes to the growth and value of mathematical knowledge.
Spectral Methods
Author: Jie Shen
Publisher: Springer Science & Business Media
ISBN: 3540710418
Category : Mathematics
Languages : en
Pages : 481
Book Description
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Publisher: Springer Science & Business Media
ISBN: 3540710418
Category : Mathematics
Languages : en
Pages : 481
Book Description
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Spectral Methods in Fluid Dynamics
Author: Claudio Canuto
Publisher: Springer Science & Business Media
ISBN: 3642841082
Category : Science
Languages : en
Pages : 582
Book Description
This is a book about spectral methods for partial differential equations: when to use them, how to implement them, and what can be learned from their of spectral methods has evolved rigorous theory. The computational side vigorously since the early 1970s, especially in computationally intensive of the more spectacular applications are applications in fluid dynamics. Some of the power of these discussed here, first in general terms as examples of the methods have been methods and later in great detail after the specifics covered. This book pays special attention to those algorithmic details which are essential to successful implementation of spectral methods. The focus is on algorithms for fluid dynamical problems in transition, turbulence, and aero dynamics. This book does not address specific applications in meteorology, partly because of the lack of experience of the authors in this field and partly because of the coverage provided by Haltiner and Williams (1980). The success of spectral methods in practical computations has led to an increasing interest in their theoretical aspects, especially since the mid-1970s. Although the theory does not yet cover the complete spectrum of applications, the analytical techniques which have been developed in recent years have facilitated the examination of an increasing number of problems of practical interest. In this book we present a unified theory of the mathematical analysis of spectral methods and apply it to many of the algorithms in current use.
Publisher: Springer Science & Business Media
ISBN: 3642841082
Category : Science
Languages : en
Pages : 582
Book Description
This is a book about spectral methods for partial differential equations: when to use them, how to implement them, and what can be learned from their of spectral methods has evolved rigorous theory. The computational side vigorously since the early 1970s, especially in computationally intensive of the more spectacular applications are applications in fluid dynamics. Some of the power of these discussed here, first in general terms as examples of the methods have been methods and later in great detail after the specifics covered. This book pays special attention to those algorithmic details which are essential to successful implementation of spectral methods. The focus is on algorithms for fluid dynamical problems in transition, turbulence, and aero dynamics. This book does not address specific applications in meteorology, partly because of the lack of experience of the authors in this field and partly because of the coverage provided by Haltiner and Williams (1980). The success of spectral methods in practical computations has led to an increasing interest in their theoretical aspects, especially since the mid-1970s. Although the theory does not yet cover the complete spectrum of applications, the analytical techniques which have been developed in recent years have facilitated the examination of an increasing number of problems of practical interest. In this book we present a unified theory of the mathematical analysis of spectral methods and apply it to many of the algorithms in current use.
Spectral Methods in MATLAB
Author: Lloyd N. Trefethen
Publisher: SIAM
ISBN: 0898714656
Category : Mathematics
Languages : en
Pages : 179
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: SIAM
ISBN: 0898714656
Category : Mathematics
Languages : en
Pages : 179
Book Description
Mathematics of Computing -- Numerical Analysis.
Spectral Methods
Author: Claudio Canuto
Publisher: Springer Science & Business Media
ISBN: 3540307265
Category : Science
Languages : en
Pages : 585
Book Description
Since the publication of "Spectral Methods in Fluid Dynamics" 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded.
Publisher: Springer Science & Business Media
ISBN: 3540307265
Category : Science
Languages : en
Pages : 585
Book Description
Since the publication of "Spectral Methods in Fluid Dynamics" 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded.
Chebyshev and Fourier Spectral Methods
Author: John P. Boyd
Publisher: Courier Corporation
ISBN: 0486411834
Category : Mathematics
Languages : en
Pages : 690
Book Description
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Publisher: Courier Corporation
ISBN: 0486411834
Category : Mathematics
Languages : en
Pages : 690
Book Description
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Spectral Methods for Uncertainty Quantification
Author: Olivier Le Maitre
Publisher: Springer Science & Business Media
ISBN: 9048135206
Category : Science
Languages : en
Pages : 542
Book Description
This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.
Publisher: Springer Science & Business Media
ISBN: 9048135206
Category : Science
Languages : en
Pages : 542
Book Description
This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.
Implementing Spectral Methods for Partial Differential Equations
Author: David A. Kopriva
Publisher: Springer Science & Business Media
ISBN: 9048122619
Category : Mathematics
Languages : en
Pages : 397
Book Description
This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.
Publisher: Springer Science & Business Media
ISBN: 9048122619
Category : Mathematics
Languages : en
Pages : 397
Book Description
This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.
Numerical Methods for Stochastic Computations
Author: Dongbin Xiu
Publisher: Princeton University Press
ISBN: 1400835348
Category : Mathematics
Languages : en
Pages : 142
Book Description
The@ first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC methods through numerical examples and rigorous development; details the procedure for converting stochastic equations into deterministic ones; using both the Galerkin and collocation approaches; and discusses the distinct differences and challenges arising from high-dimensional problems. The last section is devoted to the application of gPC methods to critical areas such as inverse problems and data assimilation. Ideal for use by graduate students and researchers both in the classroom and for self-study, Numerical Methods for Stochastic Computations provides the required tools for in-depth research related to stochastic computations. The first graduate-level textbook to focus on the fundamentals of numerical methods for stochastic computations Ideal introduction for graduate courses or self-study Fast, efficient, and accurate numerical methods Polynomial approximation theory and probability theory included Basic gPC methods illustrated through examples
Publisher: Princeton University Press
ISBN: 1400835348
Category : Mathematics
Languages : en
Pages : 142
Book Description
The@ first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC methods through numerical examples and rigorous development; details the procedure for converting stochastic equations into deterministic ones; using both the Galerkin and collocation approaches; and discusses the distinct differences and challenges arising from high-dimensional problems. The last section is devoted to the application of gPC methods to critical areas such as inverse problems and data assimilation. Ideal for use by graduate students and researchers both in the classroom and for self-study, Numerical Methods for Stochastic Computations provides the required tools for in-depth research related to stochastic computations. The first graduate-level textbook to focus on the fundamentals of numerical methods for stochastic computations Ideal introduction for graduate courses or self-study Fast, efficient, and accurate numerical methods Polynomial approximation theory and probability theory included Basic gPC methods illustrated through examples