Author: Alina Bucur
Publisher: American Mathematical Soc.
ISBN: 1470437848
Category : Education
Languages : en
Pages : 258
Book Description
In the last decade or so, analytic methods have had great success in answering questions in arithmetic geometry and number theory. The School provided a unique opportunity to introduce graduate students to analytic methods in arithmetic geometry. The book contains four articles. Alina C. Cojocaru's article introduces sieving techniques to study the group structure of points of the reduction of an elliptic curve modulo a rational prime via its division fields. Harald A. Helfgott's article provides an introduction to the study of growth in groups of Lie type, with SL2(Fq) and some of its subgroups as the key examples. The article by Étienne Fouvry, Emmanuel Kowalski, Philippe Michel, and Will Sawin describes how a systematic use of the deep methods from ℓ-adic cohomology pioneered by Grothendieck and Deligne and further developed by Katz and Laumon help make progress on various classical questions from analytic number theory. The last article, by Andrew V. Sutherland, introduces Sato-Tate groups and explores their relationship with Galois representations, motivic L-functions, and Mumford-Tate groups.
How Not to Be Wrong
Author: Jordan Ellenberg
Publisher: Penguin Press
ISBN: 1594205221
Category : Mathematics
Languages : en
Pages : 480
Book Description
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
Publisher: Penguin Press
ISBN: 1594205221
Category : Mathematics
Languages : en
Pages : 480
Book Description
A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.
Analytic Methods in Arithmetic Geometry
Author: Alina Bucur
Publisher: American Mathematical Soc.
ISBN: 1470437848
Category : Education
Languages : en
Pages : 258
Book Description
In the last decade or so, analytic methods have had great success in answering questions in arithmetic geometry and number theory. The School provided a unique opportunity to introduce graduate students to analytic methods in arithmetic geometry. The book contains four articles. Alina C. Cojocaru's article introduces sieving techniques to study the group structure of points of the reduction of an elliptic curve modulo a rational prime via its division fields. Harald A. Helfgott's article provides an introduction to the study of growth in groups of Lie type, with SL2(Fq) and some of its subgroups as the key examples. The article by Étienne Fouvry, Emmanuel Kowalski, Philippe Michel, and Will Sawin describes how a systematic use of the deep methods from ℓ-adic cohomology pioneered by Grothendieck and Deligne and further developed by Katz and Laumon help make progress on various classical questions from analytic number theory. The last article, by Andrew V. Sutherland, introduces Sato-Tate groups and explores their relationship with Galois representations, motivic L-functions, and Mumford-Tate groups.
Publisher: American Mathematical Soc.
ISBN: 1470437848
Category : Education
Languages : en
Pages : 258
Book Description
In the last decade or so, analytic methods have had great success in answering questions in arithmetic geometry and number theory. The School provided a unique opportunity to introduce graduate students to analytic methods in arithmetic geometry. The book contains four articles. Alina C. Cojocaru's article introduces sieving techniques to study the group structure of points of the reduction of an elliptic curve modulo a rational prime via its division fields. Harald A. Helfgott's article provides an introduction to the study of growth in groups of Lie type, with SL2(Fq) and some of its subgroups as the key examples. The article by Étienne Fouvry, Emmanuel Kowalski, Philippe Michel, and Will Sawin describes how a systematic use of the deep methods from ℓ-adic cohomology pioneered by Grothendieck and Deligne and further developed by Katz and Laumon help make progress on various classical questions from analytic number theory. The last article, by Andrew V. Sutherland, introduces Sato-Tate groups and explores their relationship with Galois representations, motivic L-functions, and Mumford-Tate groups.
Van Der Corput's Method of Exponential Sums
Author: S. W. Graham
Publisher: Cambridge University Press
ISBN: 0521339278
Category : Mathematics
Languages : en
Pages : 133
Book Description
This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professionals in analytic number theory. The authors show how the method can be applied to problems such as upper bounds for the Riemann-Zeta function. the Dirichlet divisor problem, the distribution of square free numbers, and the Piatetski-Shapiro prime number theorem.
Publisher: Cambridge University Press
ISBN: 0521339278
Category : Mathematics
Languages : en
Pages : 133
Book Description
This book is a self-contained account of the one- and two-dimensional van der Corput method and its use in estimating exponential sums. These arise in many problems in analytic number theory. It is the first cohesive account of much of this material and will be welcomed by graduates and professionals in analytic number theory. The authors show how the method can be applied to problems such as upper bounds for the Riemann-Zeta function. the Dirichlet divisor problem, the distribution of square free numbers, and the Piatetski-Shapiro prime number theorem.
Principles and methods. Notes and explanations for the use of students. Mathematical and physical tables
Author: Harold Whiting
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 336
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 336
Book Description
A+ Mathematical Methods Notes VCE Units 3 And 4
Author: Sue Garner (Mathematics teacher)
Publisher: Thomson A
ISBN: 9780170354127
Category : Mathematics
Languages : en
Pages : 0
Book Description
A+ Mathematical Methods Notes VCE Units 3 & 4 has been written to precisely match the VCE Mathematical Methods Study Design. The book is designed to be the most comprehensive and easy to use study guide for students of VCE Mathematical Methods. The book includes comprehensive notes which summarise the main definitions, formulas and techniques required for each area of the course. CAS screenshots are also included along with graduated topic revision questions, short answer, multiple choice and extended practice exam questions. Technology-free and technology-assumed questions are clearly distinguished and detailed solutions, revision checklists and examination advice is also included. *The A+ cover shown includes updated branding and may be different to the book available for purchase.
Publisher: Thomson A
ISBN: 9780170354127
Category : Mathematics
Languages : en
Pages : 0
Book Description
A+ Mathematical Methods Notes VCE Units 3 & 4 has been written to precisely match the VCE Mathematical Methods Study Design. The book is designed to be the most comprehensive and easy to use study guide for students of VCE Mathematical Methods. The book includes comprehensive notes which summarise the main definitions, formulas and techniques required for each area of the course. CAS screenshots are also included along with graduated topic revision questions, short answer, multiple choice and extended practice exam questions. Technology-free and technology-assumed questions are clearly distinguished and detailed solutions, revision checklists and examination advice is also included. *The A+ cover shown includes updated branding and may be different to the book available for purchase.
Mathematical Methods of Electromagnetic Theory
Author: Kurt O. Friedrichs
Publisher: American Mathematical Soc.
ISBN: 1470417111
Category : Science
Languages : en
Pages : 159
Book Description
This text provides a mathematically precise but intuitive introduction to classical electromagnetic theory and wave propagation, with a brief introduction to special relativity. While written in a distinctive, modern style, Friedrichs manages to convey the physical intuition and 19th century basis of the equations, with an emphasis on conservation laws. Particularly striking features of the book include: (a) a mathematically rigorous derivation of the interaction of electromagnetic waves with matter, (b) a straightforward explanation of how to use variational principles to solve problems in electro- and magnetostatics, and (c) a thorough discussion of the central importance of the conservation of charge. It is suitable for advanced undergraduate students in mathematics and physics with a background in advanced calculus and linear algebra, as well as mechanics and electromagnetics at an undergraduate level. Apart from minor corrections to the text, the notation was updated in this edition to follow the conventions of modern vector calculus. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Publisher: American Mathematical Soc.
ISBN: 1470417111
Category : Science
Languages : en
Pages : 159
Book Description
This text provides a mathematically precise but intuitive introduction to classical electromagnetic theory and wave propagation, with a brief introduction to special relativity. While written in a distinctive, modern style, Friedrichs manages to convey the physical intuition and 19th century basis of the equations, with an emphasis on conservation laws. Particularly striking features of the book include: (a) a mathematically rigorous derivation of the interaction of electromagnetic waves with matter, (b) a straightforward explanation of how to use variational principles to solve problems in electro- and magnetostatics, and (c) a thorough discussion of the central importance of the conservation of charge. It is suitable for advanced undergraduate students in mathematics and physics with a background in advanced calculus and linear algebra, as well as mechanics and electromagnetics at an undergraduate level. Apart from minor corrections to the text, the notation was updated in this edition to follow the conventions of modern vector calculus. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.
Conkling's Arithmetic
Author: Thomas Conkling (W.)
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 302
Book Description
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 302
Book Description
Mathematical Methods
Author: Sadri Hassani
Publisher: Springer Science & Business Media
ISBN: 038721562X
Category : Mathematics
Languages : en
Pages : 673
Book Description
Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.
Publisher: Springer Science & Business Media
ISBN: 038721562X
Category : Mathematics
Languages : en
Pages : 673
Book Description
Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.
A Mathematical Introduction to String Theory
Author: Sergio Albeverio
Publisher: Cambridge University Press
ISBN: 9780521556101
Category : Mathematics
Languages : en
Pages : 148
Book Description
This book deals with the mathematical aspects of string theory.
Publisher: Cambridge University Press
ISBN: 9780521556101
Category : Mathematics
Languages : en
Pages : 148
Book Description
This book deals with the mathematical aspects of string theory.
The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods
Author: Ernst Hairer
Publisher: Springer
ISBN: 3540468323
Category : Mathematics
Languages : en
Pages : 146
Book Description
The term differential-algebraic equation was coined to comprise differential equations with constraints (differential equations on manifolds) and singular implicit differential equations. Such problems arise in a variety of applications, e.g. constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of electrical networks, and control engineering. From a more theoretical viewpoint, the study of differential-algebraic problems gives insight into the behaviour of numerical methods for stiff ordinary differential equations. These lecture notes provide a self-contained and comprehensive treatment of the numerical solution of differential-algebraic systems using Runge-Kutta methods, and also extrapolation methods. Readers are expected to have a background in the numerical treatment of ordinary differential equations. The subject is treated in its various aspects ranging from the theory through the analysis to implementation and applications.
Publisher: Springer
ISBN: 3540468323
Category : Mathematics
Languages : en
Pages : 146
Book Description
The term differential-algebraic equation was coined to comprise differential equations with constraints (differential equations on manifolds) and singular implicit differential equations. Such problems arise in a variety of applications, e.g. constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of electrical networks, and control engineering. From a more theoretical viewpoint, the study of differential-algebraic problems gives insight into the behaviour of numerical methods for stiff ordinary differential equations. These lecture notes provide a self-contained and comprehensive treatment of the numerical solution of differential-algebraic systems using Runge-Kutta methods, and also extrapolation methods. Readers are expected to have a background in the numerical treatment of ordinary differential equations. The subject is treated in its various aspects ranging from the theory through the analysis to implementation and applications.