Normally Hyperbolic Invariant Manifolds in Dynamical Systems

Normally Hyperbolic Invariant Manifolds in Dynamical Systems PDF Author: Stephen Wiggins
Publisher: Springer Science & Business Media
ISBN: 1461243122
Category : Mathematics
Languages : en
Pages : 198

Get Book Here

Book Description
In the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.

Normally Hyperbolic Invariant Manifolds in Dynamical Systems

Normally Hyperbolic Invariant Manifolds in Dynamical Systems PDF Author: Stephen Wiggins
Publisher: Springer Science & Business Media
ISBN: 1461243122
Category : Mathematics
Languages : en
Pages : 198

Get Book Here

Book Description
In the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.

Invariant Manifolds

Invariant Manifolds PDF Author: M.W. Hirsch
Publisher: Springer
ISBN: 3540373829
Category : Mathematics
Languages : en
Pages : 153

Get Book Here

Book Description


Normally Hyperbolic Invariant Manifolds

Normally Hyperbolic Invariant Manifolds PDF Author: Jaap Eldering
Publisher: Springer Science & Business Media
ISBN: 9462390037
Category : Mathematics
Languages : en
Pages : 197

Get Book Here

Book Description
This monograph treats normally hyperbolic invariant manifolds, with a focus on noncompactness. These objects generalize hyperbolic fixed points and are ubiquitous in dynamical systems. First, normally hyperbolic invariant manifolds and their relation to hyperbolic fixed points and center manifolds, as well as, overviews of history and methods of proofs are presented. Furthermore, issues (such as uniformity and bounded geometry) arising due to noncompactness are discussed in great detail with examples. The main new result shown is a proof of persistence for noncompact normally hyperbolic invariant manifolds in Riemannian manifolds of bounded geometry. This extends well-known results by Fenichel and Hirsch, Pugh and Shub, and is complementary to noncompactness results in Banach spaces by Bates, Lu and Zeng. Along the way, some new results in bounded geometry are obtained and a framework is developed to analyze ODEs in a differential geometric context. Finally, the main result is extended to time and parameter dependent systems and overflowing invariant manifolds.

The Parameterization Method for Invariant Manifolds

The Parameterization Method for Invariant Manifolds PDF Author: Àlex Haro
Publisher: Springer
ISBN: 3319296620
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
This monograph presents some theoretical and computational aspects of the parameterization method for invariant manifolds, focusing on the following contexts: invariant manifolds associated with fixed points, invariant tori in quasi-periodically forced systems, invariant tori in Hamiltonian systems and normally hyperbolic invariant manifolds. This book provides algorithms of computation and some practical details of their implementation. The methodology is illustrated with 12 detailed examples, many of them well known in the literature of numerical computation in dynamical systems. A public version of the software used for some of the examples is available online. The book is aimed at mathematicians, scientists and engineers interested in the theory and applications of computational dynamical systems.

Normally Hyperbolic Invariant Manifolds in Dynamical Systems

Normally Hyperbolic Invariant Manifolds in Dynamical Systems PDF Author: Stephen Wiggins
Publisher:
ISBN:
Category :
Languages : en
Pages : 193

Get Book Here

Book Description


Six Lectures on Dynamical Systems

Six Lectures on Dynamical Systems PDF Author: Bernd Aulbach
Publisher: World Scientific
ISBN: 9789810225483
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
This volume consists of six articles covering different facets of the mathematical theory of dynamical systems. The topics range from topological foundations through invariant manifolds, decoupling, perturbations and computations to control theory. All contributions are based on a sound mathematical analysis. Some of them provide detailed proofs while others are of a survey character. In any case, emphasis is put on motivation and guiding ideas. Many examples are included.The papers of this volume grew out of a tutorial workshop for graduate students in mathematics held at the University of Augsburg. Each of the contributions is self-contained and provides an in-depth insight into some topic of current interest in the mathematical theory of dynamical systems. The text is suitable for courses and seminars on a graduate student level.

Foundations of Hyperbolic Manifolds

Foundations of Hyperbolic Manifolds PDF Author: John Ratcliffe
Publisher: Springer Science & Business Media
ISBN: 1475740131
Category : Mathematics
Languages : en
Pages : 761

Get Book Here

Book Description
This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

The Arithmetic of Hyperbolic 3-Manifolds

The Arithmetic of Hyperbolic 3-Manifolds PDF Author: Colin Maclachlan
Publisher: Springer Science & Business Media
ISBN: 147576720X
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
Recently there has been considerable interest in developing techniques based on number theory to attack problems of 3-manifolds; Contains many examples and lots of problems; Brings together much of the existing literature of Kleinian groups in a clear and concise way; At present no such text exists

Geometry in the Neighborhood of Invariant Manifolds of Maps and Flows and Linearization

Geometry in the Neighborhood of Invariant Manifolds of Maps and Flows and Linearization PDF Author: Urs Kirchgraber
Publisher: Longman Scientific and Technical
ISBN:
Category : Mathematics
Languages : en
Pages : 112

Get Book Here

Book Description


Canard Cycles

Canard Cycles PDF Author: Peter De Maesschalck
Publisher: Springer Nature
ISBN: 3030792331
Category : Mathematics
Languages : en
Pages : 408

Get Book Here

Book Description
This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs. In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure. The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh–Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points.