Quantization, Geometry and Noncommutative Structures in Mathematics and Physics

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics PDF Author: Alexander Cardona
Publisher: Springer
ISBN: 3319654276
Category : Science
Languages : en
Pages : 347

Get Book Here

Book Description
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics

Quantization, Geometry and Noncommutative Structures in Mathematics and Physics PDF Author: Alexander Cardona
Publisher: Springer
ISBN: 3319654276
Category : Science
Languages : en
Pages : 347

Get Book Here

Book Description
This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.

Noncommutative Structures in Mathematics and Physics

Noncommutative Structures in Mathematics and Physics PDF Author: S. Duplij
Publisher: Springer Science & Business Media
ISBN: 9401008361
Category : Science
Languages : en
Pages : 472

Get Book Here

Book Description
A presentation of outstanding achievements and ideas, of both eastern and western scientists, both mathematicians and physicists. Their presentations of recent work on quantum field theory, supergravity, M-theory, black holes and quantum gravity, together with research into noncommutative geometry, Hopf algebras, representation theory, categories and quantum groups, take the reader to the forefront of the latest developments. Other topics covered include supergravity and branes, supersymmetric quantum mechanics and superparticles, (super) black holes, superalgebra representations, and SUSY GUT phenomenology. Essential reading for workers in the modern methods of theoretical and mathematical physics.

An Introduction to Noncommutative Geometry

An Introduction to Noncommutative Geometry PDF Author: Joseph C. Várilly
Publisher: European Mathematical Society
ISBN: 9783037190241
Category : Mathematics
Languages : en
Pages : 134

Get Book Here

Book Description
Noncommutative geometry, inspired by quantum physics, describes singular spaces by their noncommutative coordinate algebras and metric structures by Dirac-like operators. Such metric geometries are described mathematically by Connes' theory of spectral triples. These lectures, delivered at an EMS Summer School on noncommutative geometry and its applications, provide an overview of spectral triples based on examples. This introduction is aimed at graduate students of both mathematics and theoretical physics. It deals with Dirac operators on spin manifolds, noncommutative tori, Moyal quantization and tangent groupoids, action functionals, and isospectral deformations. The structural framework is the concept of a noncommutative spin geometry; the conditions on spectral triples which determine this concept are developed in detail. The emphasis throughout is on gaining understanding by computing the details of specific examples. The book provides a middle ground between a comprehensive text and a narrowly focused research monograph. It is intended for self-study, enabling the reader to gain access to the essentials of noncommutative geometry. New features since the original course are an expanded bibliography and a survey of more recent examples and applications of spectral triples.

Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives PDF Author: Alain Connes
Publisher: American Mathematical Soc.
ISBN: 1470450453
Category : Mathematics
Languages : en
Pages : 810

Get Book Here

Book Description
The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

An Introduction to Noncommutative Differential Geometry and Its Physical Applications

An Introduction to Noncommutative Differential Geometry and Its Physical Applications PDF Author: J. Madore
Publisher: Cambridge University Press
ISBN: 0521659914
Category : Mathematics
Languages : en
Pages : 381

Get Book Here

Book Description
A thoroughly revised introduction to non-commutative geometry.

Noncommutative Geometry

Noncommutative Geometry PDF Author: Alain Connes
Publisher: Springer
ISBN: 3540397027
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.

Noncommutative Deformation Theory

Noncommutative Deformation Theory PDF Author: Eivind Eriksen
Publisher: CRC Press
ISBN: 1351652125
Category : Mathematics
Languages : en
Pages : 382

Get Book Here

Book Description
Noncommutative Deformation Theory is aimed at mathematicians and physicists studying the local structure of moduli spaces in algebraic geometry. This book introduces a general theory of noncommutative deformations, with applications to the study of moduli spaces of representations of associative algebras and to quantum theory in physics. An essential part of this theory is the study of obstructions of liftings of representations using generalised (matric) Massey products. Suitable for researchers in algebraic geometry and mathematical physics interested in the workings of noncommutative algebraic geometry, it may also be useful for advanced graduate students in these fields.

Noncommutative Geometry and Particle Physics

Noncommutative Geometry and Particle Physics PDF Author: Walter D. van Suijlekom
Publisher: Springer
ISBN: 9401791627
Category : Science
Languages : en
Pages : 246

Get Book Here

Book Description
This book provides an introduction to noncommutative geometry and presents a number of its recent applications to particle physics. It is intended for graduate students in mathematics/theoretical physics who are new to the field of noncommutative geometry, as well as for researchers in mathematics/theoretical physics with an interest in the physical applications of noncommutative geometry. In the first part, we introduce the main concepts and techniques by studying finite noncommutative spaces, providing a “light” approach to noncommutative geometry. We then proceed with the general framework by defining and analyzing noncommutative spin manifolds and deriving some main results on them, such as the local index formula. In the second part, we show how noncommutative spin manifolds naturally give rise to gauge theories, applying this principle to specific examples. We subsequently geometrically derive abelian and non-abelian Yang-Mills gauge theories, and eventually the full Standard Model of particle physics, and conclude by explaining how noncommutative geometry might indicate how to proceed beyond the Standard Model.

Analysis And Mathematical Physics

Analysis And Mathematical Physics PDF Author: Shaun Bullett
Publisher: World Scientific
ISBN: 1786341018
Category : Science
Languages : en
Pages : 246

Get Book Here

Book Description
This is a concise reference book on analysis and mathematical physics, leading readers from a foundation to advanced level understanding of the topic. This is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as distributions, Fourier transforms and microlocal analysis, C* Algebras, value distribution of meromorphic functions, noncommutative differential geometry, differential geometry and mathematical physics, mathematical problems of general relativity, and special functions of mathematical physics.Analysis and Mathematical Physics is the sixth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.

Noncommutative Geometry and Cayley-smooth Orders

Noncommutative Geometry and Cayley-smooth Orders PDF Author: Lieven Le Bruyn
Publisher: CRC Press
ISBN: 1420064231
Category : Mathematics
Languages : en
Pages : 592

Get Book Here

Book Description
Noncommutative Geometry and Cayley-smooth Orders explains the theory of Cayley-smooth orders in central simple algebras over function fields of varieties. In particular, the book describes the etale local structure of such orders as well as their central singularities and finite dimensional representations. After an introduction to partial d