Neural-Symbolic Cognitive Reasoning

Neural-Symbolic Cognitive Reasoning PDF Author: Artur S. D'Avila Garcez
Publisher: Springer Science & Business Media
ISBN: 3540732454
Category : Computers
Languages : en
Pages : 200

Get Book Here

Book Description
This book explores why, regarding practical reasoning, humans are sometimes still faster than artificial intelligence systems. It is the first to offer a self-contained presentation of neural network models for many computer science logics.

Neural-Symbolic Cognitive Reasoning

Neural-Symbolic Cognitive Reasoning PDF Author: Artur S. D'Avila Garcez
Publisher: Springer Science & Business Media
ISBN: 3540732454
Category : Computers
Languages : en
Pages : 200

Get Book Here

Book Description
This book explores why, regarding practical reasoning, humans are sometimes still faster than artificial intelligence systems. It is the first to offer a self-contained presentation of neural network models for many computer science logics.

Neural-Symbolic Learning Systems

Neural-Symbolic Learning Systems PDF Author: Artur S. d'Avila Garcez
Publisher: Springer Science & Business Media
ISBN: 1447102118
Category : Computers
Languages : en
Pages : 276

Get Book Here

Book Description
Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence. This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications. Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems.

Neuro-Symbolic Artificial Intelligence: The State of the Art

Neuro-Symbolic Artificial Intelligence: The State of the Art PDF Author: P. Hitzler
Publisher: IOS Press
ISBN: 1643682458
Category : Computers
Languages : en
Pages : 410

Get Book Here

Book Description
Neuro-symbolic AI is an emerging subfield of Artificial Intelligence that brings together two hitherto distinct approaches. ”Neuro” refers to the artificial neural networks prominent in machine learning, ”symbolic” refers to algorithmic processing on the level of meaningful symbols, prominent in knowledge representation. In the past, these two fields of AI have been largely separate, with very little crossover, but the so-called “third wave” of AI is now bringing them together. This book, Neuro-Symbolic Artificial Intelligence: The State of the Art, provides an overview of this development in AI. The two approaches differ significantly in terms of their strengths and weaknesses and, from a cognitive-science perspective, there is a question as to how a neural system can perform symbol manipulation, and how the representational differences between these two approaches can be bridged. The book presents 17 overview papers, all by authors who have made significant contributions in the past few years and starting with a historic overview first seen in 2016. With just seven months elapsed from invitation to authors to final copy, the book is as up-to-date as a published overview of this subject can be. Based on the editors’ own desire to understand the current state of the art, this book reflects the breadth and depth of the latest developments in neuro-symbolic AI, and will be of interest to students, researchers, and all those working in the field of Artificial Intelligence.

Neural-Symbolic Learning and Reasoning

Neural-Symbolic Learning and Reasoning PDF Author: Tarek R. Besold
Publisher: Springer Nature
ISBN: 303171170X
Category :
Languages : en
Pages : 357

Get Book Here

Book Description


Perspectives of Neural-Symbolic Integration

Perspectives of Neural-Symbolic Integration PDF Author: Barbara Hammer
Publisher: Springer
ISBN: 3540739548
Category : Technology & Engineering
Languages : en
Pages : 325

Get Book Here

Book Description
When it comes to robotics and bioinformatics, the Holy Grail everyone is seeking is how to dovetail logic-based inference and statistical machine learning. This volume offers some possible solutions to this eternal problem. Edited with flair and sensitivity by Hammer and Hitzler, the book contains state-of-the-art contributions in neural-symbolic integration, covering `loose' coupling by means of structure kernels or recursive models as well as `strong' coupling of logic and neural networks.

Reliable Reasoning

Reliable Reasoning PDF Author: Gilbert Harman
Publisher: MIT Press
ISBN: 0262263157
Category : Psychology
Languages : en
Pages : 119

Get Book Here

Book Description
The implications for philosophy and cognitive science of developments in statistical learning theory. In Reliable Reasoning, Gilbert Harman and Sanjeev Kulkarni—a philosopher and an engineer—argue that philosophy and cognitive science can benefit from statistical learning theory (SLT), the theory that lies behind recent advances in machine learning. The philosophical problem of induction, for example, is in part about the reliability of inductive reasoning, where the reliability of a method is measured by its statistically expected percentage of errors—a central topic in SLT. After discussing philosophical attempts to evade the problem of induction, Harman and Kulkarni provide an admirably clear account of the basic framework of SLT and its implications for inductive reasoning. They explain the Vapnik-Chervonenkis (VC) dimension of a set of hypotheses and distinguish two kinds of inductive reasoning. The authors discuss various topics in machine learning, including nearest-neighbor methods, neural networks, and support vector machines. Finally, they describe transductive reasoning and suggest possible new models of human reasoning suggested by developments in SLT.

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges PDF Author: I. Tiddi
Publisher: IOS Press
ISBN: 1643680811
Category : Computers
Languages : en
Pages : 314

Get Book Here

Book Description
The latest advances in Artificial Intelligence and (deep) Machine Learning in particular revealed a major drawback of modern intelligent systems, namely the inability to explain their decisions in a way that humans can easily understand. While eXplainable AI rapidly became an active area of research in response to this need for improved understandability and trustworthiness, the field of Knowledge Representation and Reasoning (KRR) has on the other hand a long-standing tradition in managing information in a symbolic, human-understandable form. This book provides the first comprehensive collection of research contributions on the role of knowledge graphs for eXplainable AI (KG4XAI), and the papers included here present academic and industrial research focused on the theory, methods and implementations of AI systems that use structured knowledge to generate reliable explanations. Introductory material on knowledge graphs is included for those readers with only a minimal background in the field, as well as specific chapters devoted to advanced methods, applications and case-studies that use knowledge graphs as a part of knowledge-based, explainable systems (KBX-systems). The final chapters explore current challenges and future research directions in the area of knowledge graphs for eXplainable AI. The book not only provides a scholarly, state-of-the-art overview of research in this subject area, but also fosters the hybrid combination of symbolic and subsymbolic AI methods, and will be of interest to all those working in the field.

Knowledge Representation and Reasoning

Knowledge Representation and Reasoning PDF Author: Ronald Brachman
Publisher: Morgan Kaufmann
ISBN: 1558609326
Category : Computers
Languages : en
Pages : 414

Get Book Here

Book Description
Knowledge representation is at the very core of a radical idea for understanding intelligence. This book talks about the central concepts of knowledge representation developed over the years. It is suitable for researchers and practitioners in database management, information retrieval, object-oriented systems and artificial intelligence.

Hybrid Neural Systems

Hybrid Neural Systems PDF Author: Stefan Wermter
Publisher: Springer Science & Business Media
ISBN: 3540673059
Category : Computers
Languages : en
Pages : 411

Get Book Here

Book Description
Hybrid neural systems are computational systems which are based mainly on artificial neural networks and allow for symbolic interpretation or interaction with symbolic components. This book is derived from a workshop held during the NIPS'98 in Denver, Colorado, USA, and competently reflects the state of the art of research and development in hybrid neural systems. The 26 revised full papers presented together with an introductory overview by the volume editors have been through a twofold process of careful reviewing and revision. The papers are organized in the following topical sections: structured connectionism and rule representation; distributed neural architectures and language processing; transformation and explanation; robotics, vision, and cognitive approaches.

Chinese Computational Linguistics

Chinese Computational Linguistics PDF Author: Sheng Li
Publisher: Springer Nature
ISBN: 3030841863
Category : Computers
Languages : en
Pages : 488

Get Book Here

Book Description
This book constitutes the proceedings of the 20th China National Conference on Computational Linguistics, CCL 2021, held in Hohhot, China, in August 2021. The 31 full presented in this volume were carefully reviewed and selected from 90 submissions. The conference papers covers the following topics such as Machine Translation and Multilingual Information Processing, Minority Language Information Processing, Social Computing and Sentiment Analysis, Text Generation and Summarization, Information Retrieval, Dialogue and Question Answering, Linguistics and Cognitive Science, Language Resource and Evaluation, Knowledge Graph and Information Extraction, and NLP Applications.