Author: Horacio D. Espinosa
Publisher: John Wiley & Sons
ISBN: 111848259X
Category : Technology & Engineering
Languages : en
Pages : 519
Book Description
Research in nano and cell mechanics has received much attention from the scientific community as a result of society needs and government initiatives to accelerate developments in materials, manufacturing, electronics, medicine and healthcare, energy, and the environment. Engineers and scientists are currently engaging in increasingly complex scientific problems that require interdisciplinary approaches. In this regard, studies in this field draw from fundamentals in atomistic scale phenomena, biology, statistical and continuum mechanics, and multiscale modeling and experimentation. As a result, contributions in these areas are spread over a large number of specialized journals, which prompted the Editors to assemble this book. Nano and Cell Mechanics: Fundamentals and Frontiers brings together many of the new developments in the field for the first time, and covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. Key features: • Provides an overview of recent advances in nano and cell mechanics. • Covers experimental, analytical, and computational tools used to investigate biological and nanoscale phenomena. • Covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. • Presents multiscale-multiphysics modeling and experimentation techniques. • Examines applications in materials, manufacturing, electronics, medicine and healthcare. Nano and Cell Mechanics: Fundamentals and Frontiers is written by internationally recognized experts in theoretical and applied mechanics, applied physics, chemistry, and biology. It is an invaluable reference for graduate students of nano- and bio-technologies, researchers in academia and industry who are working in nano and cell mechanics, and practitioners who are interested in learning about the latest analysis tools. The book can also serve as a text for graduate courses in theoretical and applied mechanics, mechanical engineering, materials science, and applied physics.
Nano and Cell Mechanics
Author: Horacio D. Espinosa
Publisher: John Wiley & Sons
ISBN: 111848259X
Category : Technology & Engineering
Languages : en
Pages : 519
Book Description
Research in nano and cell mechanics has received much attention from the scientific community as a result of society needs and government initiatives to accelerate developments in materials, manufacturing, electronics, medicine and healthcare, energy, and the environment. Engineers and scientists are currently engaging in increasingly complex scientific problems that require interdisciplinary approaches. In this regard, studies in this field draw from fundamentals in atomistic scale phenomena, biology, statistical and continuum mechanics, and multiscale modeling and experimentation. As a result, contributions in these areas are spread over a large number of specialized journals, which prompted the Editors to assemble this book. Nano and Cell Mechanics: Fundamentals and Frontiers brings together many of the new developments in the field for the first time, and covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. Key features: • Provides an overview of recent advances in nano and cell mechanics. • Covers experimental, analytical, and computational tools used to investigate biological and nanoscale phenomena. • Covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. • Presents multiscale-multiphysics modeling and experimentation techniques. • Examines applications in materials, manufacturing, electronics, medicine and healthcare. Nano and Cell Mechanics: Fundamentals and Frontiers is written by internationally recognized experts in theoretical and applied mechanics, applied physics, chemistry, and biology. It is an invaluable reference for graduate students of nano- and bio-technologies, researchers in academia and industry who are working in nano and cell mechanics, and practitioners who are interested in learning about the latest analysis tools. The book can also serve as a text for graduate courses in theoretical and applied mechanics, mechanical engineering, materials science, and applied physics.
Publisher: John Wiley & Sons
ISBN: 111848259X
Category : Technology & Engineering
Languages : en
Pages : 519
Book Description
Research in nano and cell mechanics has received much attention from the scientific community as a result of society needs and government initiatives to accelerate developments in materials, manufacturing, electronics, medicine and healthcare, energy, and the environment. Engineers and scientists are currently engaging in increasingly complex scientific problems that require interdisciplinary approaches. In this regard, studies in this field draw from fundamentals in atomistic scale phenomena, biology, statistical and continuum mechanics, and multiscale modeling and experimentation. As a result, contributions in these areas are spread over a large number of specialized journals, which prompted the Editors to assemble this book. Nano and Cell Mechanics: Fundamentals and Frontiers brings together many of the new developments in the field for the first time, and covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. Key features: • Provides an overview of recent advances in nano and cell mechanics. • Covers experimental, analytical, and computational tools used to investigate biological and nanoscale phenomena. • Covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. • Presents multiscale-multiphysics modeling and experimentation techniques. • Examines applications in materials, manufacturing, electronics, medicine and healthcare. Nano and Cell Mechanics: Fundamentals and Frontiers is written by internationally recognized experts in theoretical and applied mechanics, applied physics, chemistry, and biology. It is an invaluable reference for graduate students of nano- and bio-technologies, researchers in academia and industry who are working in nano and cell mechanics, and practitioners who are interested in learning about the latest analysis tools. The book can also serve as a text for graduate courses in theoretical and applied mechanics, mechanical engineering, materials science, and applied physics.
Methods in Cell Biology Vol. 32
Author: Alan Michael Tartakoff
Publisher: Academic Press
ISBN: 9780125641326
Category :
Languages : en
Pages : 532
Book Description
Publisher: Academic Press
ISBN: 9780125641326
Category :
Languages : en
Pages : 532
Book Description
Cytoskeletal Mechanics
Author: Mohammad R. K. Mofrad
Publisher: Cambridge University Press
ISBN: 1139458108
Category : Science
Languages : en
Pages : 231
Book Description
This book presents a full spectrum of views on current approaches to modeling cell mechanics. The authors come from the biophysics, bioengineering and physical chemistry communities and each joins the discussion with a unique perspective on biological systems. Consequently, the approaches range from finite element methods commonly used in continuum mechanics to models of the cytoskeleton as a cross-linked polymer network to models of glassy materials and gels. Studies reflect both the static, instantaneous nature of the structure, as well as its dynamic nature due to polymerization and the full array of biological processes. While it is unlikely that a single unifying approach will evolve from this diversity, it is the hope that a better appreciation of the various perspectives will lead to a highly coordinated approach to exploring the essential problems and better discussions among investigators with differing views.
Publisher: Cambridge University Press
ISBN: 1139458108
Category : Science
Languages : en
Pages : 231
Book Description
This book presents a full spectrum of views on current approaches to modeling cell mechanics. The authors come from the biophysics, bioengineering and physical chemistry communities and each joins the discussion with a unique perspective on biological systems. Consequently, the approaches range from finite element methods commonly used in continuum mechanics to models of the cytoskeleton as a cross-linked polymer network to models of glassy materials and gels. Studies reflect both the static, instantaneous nature of the structure, as well as its dynamic nature due to polymerization and the full array of biological processes. While it is unlikely that a single unifying approach will evolve from this diversity, it is the hope that a better appreciation of the various perspectives will lead to a highly coordinated approach to exploring the essential problems and better discussions among investigators with differing views.
Mechanics of Biological Systems
Author: Seungman Park
Publisher: Morgan & Claypool Publishers
ISBN: 1643273922
Category : Science
Languages : en
Pages : 135
Book Description
This book is an introduction to the mechanical properties, the force generating capacity, and the sensitivity to mechanical cues of the biological system. To understand how these qualities govern many essential biological processes, we also discuss how to measure them. However, before delving into the details and the techniques, we will first learn the operational definitions in mechanics, such as force, stress, elasticity, viscosity and so on. This book will explore the mechanics at three different length scales – molecular, cellular, and tissue levels – sequentially, and discuss the measurement techniques to quantify the intrinsic mechanical properties, force generating capacity, mechanoresponsive processes in the biological systems, and rupture forces.
Publisher: Morgan & Claypool Publishers
ISBN: 1643273922
Category : Science
Languages : en
Pages : 135
Book Description
This book is an introduction to the mechanical properties, the force generating capacity, and the sensitivity to mechanical cues of the biological system. To understand how these qualities govern many essential biological processes, we also discuss how to measure them. However, before delving into the details and the techniques, we will first learn the operational definitions in mechanics, such as force, stress, elasticity, viscosity and so on. This book will explore the mechanics at three different length scales – molecular, cellular, and tissue levels – sequentially, and discuss the measurement techniques to quantify the intrinsic mechanical properties, force generating capacity, mechanoresponsive processes in the biological systems, and rupture forces.
Nanostructures for the Engineering of Cells, Tissues and Organs
Author: Alexandru Mihai Grumezescu
Publisher: William Andrew
ISBN: 0128136669
Category : Science
Languages : en
Pages : 631
Book Description
Nanostructures for the Engineering of Cells: Tissues and Organs showcases recent advances in pharmaceutical nanotechnology, with particular emphasis on tissue engineering, organ and cell applications. The book provides an up-to-date overview of organ targeting and cell targeting using nanotechnology. In addition, tissue engineering applications, such as skin regeneration are also discussed. Written by a diverse range of international academics, this book is a valuable research resource for researchers working in the biomaterials, medical and pharmaceutical industries. - Explains how nanomaterials regulate different cell behavior and function as a carrier for different biomolecules - Shows how nanobiomaterials and nanobiodevices are used in a range of treatment areas, such as skin tissue, wound healing and bone regeneration - Discusses nanomaterial preparation strategies for pharmaceutical application and regenerative medicine
Publisher: William Andrew
ISBN: 0128136669
Category : Science
Languages : en
Pages : 631
Book Description
Nanostructures for the Engineering of Cells: Tissues and Organs showcases recent advances in pharmaceutical nanotechnology, with particular emphasis on tissue engineering, organ and cell applications. The book provides an up-to-date overview of organ targeting and cell targeting using nanotechnology. In addition, tissue engineering applications, such as skin regeneration are also discussed. Written by a diverse range of international academics, this book is a valuable research resource for researchers working in the biomaterials, medical and pharmaceutical industries. - Explains how nanomaterials regulate different cell behavior and function as a carrier for different biomolecules - Shows how nanobiomaterials and nanobiodevices are used in a range of treatment areas, such as skin tissue, wound healing and bone regeneration - Discusses nanomaterial preparation strategies for pharmaceutical application and regenerative medicine
Cell Mechanics and Tumor Development
Author: Ronald L. Huston
Publisher:
ISBN: 9811208956
Category : Cancer cells
Languages : en
Pages : 458
Book Description
"The focus of this book is on centrioles -- small organelles adjacent to the nucleus in all human and animal (eucaryotic) cells. It provides the findings and critical analyses of over 750 articles written in this century. In addition to centrioles, the topics include: centrosomes, chromosomes, microtubules and kinetochores, cell division and duplication, and tumor development. The book also includes discussions on centriole dynamics and electromagnetics effects. It concludes with a chapter on centriole errors -- particularly cells with supernumerary centrioles. The book is intended for students, scholars, and researchers studying and working in the field of nuclear mechanics. In addition to the book content, it provides a guide for literature investigation"--Publisher's website
Publisher:
ISBN: 9811208956
Category : Cancer cells
Languages : en
Pages : 458
Book Description
"The focus of this book is on centrioles -- small organelles adjacent to the nucleus in all human and animal (eucaryotic) cells. It provides the findings and critical analyses of over 750 articles written in this century. In addition to centrioles, the topics include: centrosomes, chromosomes, microtubules and kinetochores, cell division and duplication, and tumor development. The book also includes discussions on centriole dynamics and electromagnetics effects. It concludes with a chapter on centriole errors -- particularly cells with supernumerary centrioles. The book is intended for students, scholars, and researchers studying and working in the field of nuclear mechanics. In addition to the book content, it provides a guide for literature investigation"--Publisher's website
Nano Comes to Life
Author: Sonia Contera
Publisher: Princeton University Press
ISBN: 0691206449
Category : Medical
Languages : en
Pages : 232
Book Description
"Increasingly, scientists are gaining control over matter at the nanometer scale. Spearheaded by physical scientists operating at the interfaces of physics and biology (such as the author herself), advances in nanoscience and technology are transforming how we think about life and treat human health. This is due to a convergence of size. To do medicine, one must understand and be able to reach the nanoscale environment of healthy cells in tissues and organs, as well as other nano-sized building blocks that constitute a living organism, such as proteins and DNA. The ground-breaking advances being made at the frontiers of nanoscience and -technology, specifically in the areas of biology and medicine, are the subject of this short, popular-level book. Chapter 1 describes how nanotechnology and quantitative methods in biology are progressively being deployed to embrace life in all its multiscale, hierarchical intricacy and multiplicity. Chapters 2 through 4 review how bioinspired and biomimetic nanostructures and nanomachines are being created and integrated into strategies aimed at solving specific medical problems. In particular, Chapter 2 summarizes how scientists are seeking to build artificial nanostructures using both biological molecules and the organizational principles of biology. Chapter 3 gives an account of how nanotechnology is being used to develop drug-delivery strategies that specifically target cancer cells and tumors to improve the efficacy of current cancer chemotherapies. Chapter 4 reviews the science of one of the most potentially transformative scientific fields: tissue engineering. In a concluding chapter (Chapter 5), Contera reviews how nanotechnology, biology, and medicine will continue fusing with other sciences and technologies - incorporating more mathematical and computational modelling, as well as AI and robotics. Nanoscale devices will be used to learn biology; and biology will be used to inspire increasingly sophisticated "transmaterial" devices that mimic some of the characteristics of biology and incorporate new features that are not available in the biological world. The effects on human health and longevity will be profound. In a more personal epilogue, Contera describes the crossroads at which we find ourselves. Accessing our own biology evokes a mixture of possibility and dread. However, Contera maintains that we can create a positive transmaterial world for the benefit of humankind, and she describes ways in which scientists are proactively engaging with the public, politicians, industry, and entrepreneurs, as well as the media and the arts, to communicate the power and risks of new advances and to influence the ways in which new technologies will affect our future"--
Publisher: Princeton University Press
ISBN: 0691206449
Category : Medical
Languages : en
Pages : 232
Book Description
"Increasingly, scientists are gaining control over matter at the nanometer scale. Spearheaded by physical scientists operating at the interfaces of physics and biology (such as the author herself), advances in nanoscience and technology are transforming how we think about life and treat human health. This is due to a convergence of size. To do medicine, one must understand and be able to reach the nanoscale environment of healthy cells in tissues and organs, as well as other nano-sized building blocks that constitute a living organism, such as proteins and DNA. The ground-breaking advances being made at the frontiers of nanoscience and -technology, specifically in the areas of biology and medicine, are the subject of this short, popular-level book. Chapter 1 describes how nanotechnology and quantitative methods in biology are progressively being deployed to embrace life in all its multiscale, hierarchical intricacy and multiplicity. Chapters 2 through 4 review how bioinspired and biomimetic nanostructures and nanomachines are being created and integrated into strategies aimed at solving specific medical problems. In particular, Chapter 2 summarizes how scientists are seeking to build artificial nanostructures using both biological molecules and the organizational principles of biology. Chapter 3 gives an account of how nanotechnology is being used to develop drug-delivery strategies that specifically target cancer cells and tumors to improve the efficacy of current cancer chemotherapies. Chapter 4 reviews the science of one of the most potentially transformative scientific fields: tissue engineering. In a concluding chapter (Chapter 5), Contera reviews how nanotechnology, biology, and medicine will continue fusing with other sciences and technologies - incorporating more mathematical and computational modelling, as well as AI and robotics. Nanoscale devices will be used to learn biology; and biology will be used to inspire increasingly sophisticated "transmaterial" devices that mimic some of the characteristics of biology and incorporate new features that are not available in the biological world. The effects on human health and longevity will be profound. In a more personal epilogue, Contera describes the crossroads at which we find ourselves. Accessing our own biology evokes a mixture of possibility and dread. However, Contera maintains that we can create a positive transmaterial world for the benefit of humankind, and she describes ways in which scientists are proactively engaging with the public, politicians, industry, and entrepreneurs, as well as the media and the arts, to communicate the power and risks of new advances and to influence the ways in which new technologies will affect our future"--
Introduction To Micromechanics And Nanomechanics (2nd Edition)
Author: Shaofan Li
Publisher: World Scientific Publishing Company
ISBN: 981443678X
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
This book presents a systematic treatise on micromechanics and nanomechanics, which encompasses many important research and development areas such as composite materials and homogenizations, mechanics of quantum dots, multiscale analysis and mechanics, defect mechanics of solids including fracture and dislocation mechanics, etc.In this second edition, some previous chapters are revised, and some new chapters added — crystal plasticity, multiscale crystal defect dynamics, quantum force and stress, micromechanics of metamaterials, and micromorphic theory.The book serves primarily as a graduate textbook and intended as a reference book for the next generation of scientists and engineers. It also has a unique pedagogical style that is specially suitable for self-study and self-learning for many researchers and professionals who do not have time attending classes and lectures.
Publisher: World Scientific Publishing Company
ISBN: 981443678X
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
This book presents a systematic treatise on micromechanics and nanomechanics, which encompasses many important research and development areas such as composite materials and homogenizations, mechanics of quantum dots, multiscale analysis and mechanics, defect mechanics of solids including fracture and dislocation mechanics, etc.In this second edition, some previous chapters are revised, and some new chapters added — crystal plasticity, multiscale crystal defect dynamics, quantum force and stress, micromechanics of metamaterials, and micromorphic theory.The book serves primarily as a graduate textbook and intended as a reference book for the next generation of scientists and engineers. It also has a unique pedagogical style that is specially suitable for self-study and self-learning for many researchers and professionals who do not have time attending classes and lectures.
Nano Mechanics and Materials
Author: Wing Kam Liu
Publisher: John Wiley & Sons
ISBN: 0470035218
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Nanotechnology is a progressive research and development topic with large amounts of venture capital and government funding being invested worldwide. Nano mechanics, in particular, is the study and characterization of the mechanical behaviour of individual atoms, systems and structures in response to various types of forces and loading conditions. This text, written by respected researchers in the field, informs researchers and practitioners about the fundamental concepts in nano mechanics and materials, focusing on their modelling via multiple scale methods and techniques. The book systematically covers the theory behind multi-particle and nanoscale systems, introduces multiple scale methods, and finally looks at contemporary applications in nano-structured and bio-inspired materials.
Publisher: John Wiley & Sons
ISBN: 0470035218
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
Nanotechnology is a progressive research and development topic with large amounts of venture capital and government funding being invested worldwide. Nano mechanics, in particular, is the study and characterization of the mechanical behaviour of individual atoms, systems and structures in response to various types of forces and loading conditions. This text, written by respected researchers in the field, informs researchers and practitioners about the fundamental concepts in nano mechanics and materials, focusing on their modelling via multiple scale methods and techniques. The book systematically covers the theory behind multi-particle and nanoscale systems, introduces multiple scale methods, and finally looks at contemporary applications in nano-structured and bio-inspired materials.
Unravelling Single Cell Genomics
Author: Nathalie Bontoux
Publisher: Royal Society of Chemistry
ISBN: 1849732280
Category : Science
Languages : en
Pages : 333
Book Description
This unique introduction to the growing field of microfluidics applied to genomics provides an overview of the latest technologies and emphasizes its potential in answering important biological questions. Written by a physicist and a biologist, it offers a more comprehensive view than the previous literature. The book starts with key ideas in molecular biology, developmental biology and microtechnology before going on to cover the specifics of single cell analysis and microfluidic devices for single cell molecular analysis. Review chapters discuss the state-of-the art and will prove invaluable to all those planning to develop microdevices for molecular analysis of single cells. Methods allowing complete analysis of gene expression in the single cell are stressed - as opposed the more commonly used techniques that allow analysis of only a few genes at a time. As pioneers in the field, the authors understand how critical it is for a physicist to understand the biological issues and questions related to single cell analysis, as well for biologists to understand what microfluidics is all about. Aimed predominantly at graduate students, this book will also be of significant interest to scientists working in or affiliated with this field.
Publisher: Royal Society of Chemistry
ISBN: 1849732280
Category : Science
Languages : en
Pages : 333
Book Description
This unique introduction to the growing field of microfluidics applied to genomics provides an overview of the latest technologies and emphasizes its potential in answering important biological questions. Written by a physicist and a biologist, it offers a more comprehensive view than the previous literature. The book starts with key ideas in molecular biology, developmental biology and microtechnology before going on to cover the specifics of single cell analysis and microfluidic devices for single cell molecular analysis. Review chapters discuss the state-of-the art and will prove invaluable to all those planning to develop microdevices for molecular analysis of single cells. Methods allowing complete analysis of gene expression in the single cell are stressed - as opposed the more commonly used techniques that allow analysis of only a few genes at a time. As pioneers in the field, the authors understand how critical it is for a physicist to understand the biological issues and questions related to single cell analysis, as well for biologists to understand what microfluidics is all about. Aimed predominantly at graduate students, this book will also be of significant interest to scientists working in or affiliated with this field.