Multi-scale Microstructure Characterization for Improved Understanding of Microstructure-property Relationship in Additive Manufacturing

Multi-scale Microstructure Characterization for Improved Understanding of Microstructure-property Relationship in Additive Manufacturing PDF Author: Hye Yun Song
Publisher:
ISBN:
Category :
Languages : en
Pages : 142

Get Book Here

Book Description
As a precipitation-strengthened alloy, the heat treatment is critical for IN718, since the desired mechanical properties, such as high-temperature tensile and creep strength, are only acquired by the formation of the strengthening precipitates, namely gamma prime and gamma double prime. Currently, the industrial standards for the heat treatment of IN718 are developed for cast and wrought cases and not specifically for AM builds. Thus, it is essential to evaluate the effect of the heat treatment on the formation of the strengthening precipitates in IN718 builds fabricated by L-PBF AM, which is the focus of the second objective. Particularly, a modification to the industry standard heat treatment is developed to maximize the fraction of the strengthening precipitates in the IN718 builds. The microstructural characterizations are performed for several modified heat treatment cases including a homogenization step, solution annealing step and aging step. The micro-hardness values are measured for as-built conditions and several heat-treated conditions including the modified homogenization, solution anneal and aging steps. Finally, the oxidation behavior during the heat treatment is also discussed and compared to that for a piece of actual cast. The third objective of the present study is the evaluation of the mechanical properties of heat-treated IN718 builds produced by L-PBF AM. Particularly, creep test are performed to quantify the mechanical properties of the heat-treated IN718 builds. The creep samples are heat-treated using the following condition: homogenization at 1100 °C for 2 hours followed by air cooling (AC), and aging at 760 °C for 10 hours also followed by AC. For the creep test, the samples are loaded at a constant stress (690 MPa or 100 ksi) at 649 °C (1200 °F) in accordance to Aerospace Material Standards (AMS) 5663. The creep rate of the heat-treated AM sample is compared with the literature data for wrought cases. The relationship of creep strength to the characteristic of the microstructures in the heat-treated IN718 builds is discussed. In summary, the research results provide insights into the microstructure-creep-strength relationship for IN718 fabricated by additive manufacturing. Particularly, a modified post-built heat treatment is developed to maximize the formation of strengthening precipitates and achieve large grains in IN718, resulting in a markedly higher creep strength when compared to the literature data for wrought cases. Taken as a whole, the new knowledge generated in this dissertation is essential to ensure the performance of additively manufactured parts in structural applications.

Multi-scale Microstructure Characterization for Improved Understanding of Microstructure-property Relationship in Additive Manufacturing

Multi-scale Microstructure Characterization for Improved Understanding of Microstructure-property Relationship in Additive Manufacturing PDF Author: Hye Yun Song
Publisher:
ISBN:
Category :
Languages : en
Pages : 142

Get Book Here

Book Description
As a precipitation-strengthened alloy, the heat treatment is critical for IN718, since the desired mechanical properties, such as high-temperature tensile and creep strength, are only acquired by the formation of the strengthening precipitates, namely gamma prime and gamma double prime. Currently, the industrial standards for the heat treatment of IN718 are developed for cast and wrought cases and not specifically for AM builds. Thus, it is essential to evaluate the effect of the heat treatment on the formation of the strengthening precipitates in IN718 builds fabricated by L-PBF AM, which is the focus of the second objective. Particularly, a modification to the industry standard heat treatment is developed to maximize the fraction of the strengthening precipitates in the IN718 builds. The microstructural characterizations are performed for several modified heat treatment cases including a homogenization step, solution annealing step and aging step. The micro-hardness values are measured for as-built conditions and several heat-treated conditions including the modified homogenization, solution anneal and aging steps. Finally, the oxidation behavior during the heat treatment is also discussed and compared to that for a piece of actual cast. The third objective of the present study is the evaluation of the mechanical properties of heat-treated IN718 builds produced by L-PBF AM. Particularly, creep test are performed to quantify the mechanical properties of the heat-treated IN718 builds. The creep samples are heat-treated using the following condition: homogenization at 1100 °C for 2 hours followed by air cooling (AC), and aging at 760 °C for 10 hours also followed by AC. For the creep test, the samples are loaded at a constant stress (690 MPa or 100 ksi) at 649 °C (1200 °F) in accordance to Aerospace Material Standards (AMS) 5663. The creep rate of the heat-treated AM sample is compared with the literature data for wrought cases. The relationship of creep strength to the characteristic of the microstructures in the heat-treated IN718 builds is discussed. In summary, the research results provide insights into the microstructure-creep-strength relationship for IN718 fabricated by additive manufacturing. Particularly, a modified post-built heat treatment is developed to maximize the formation of strengthening precipitates and achieve large grains in IN718, resulting in a markedly higher creep strength when compared to the literature data for wrought cases. Taken as a whole, the new knowledge generated in this dissertation is essential to ensure the performance of additively manufactured parts in structural applications.

Quality Analysis of Additively Manufactured Metals

Quality Analysis of Additively Manufactured Metals PDF Author: Javad Kadkhodapour
Publisher: Elsevier
ISBN: 0323886493
Category : Technology & Engineering
Languages : en
Pages : 858

Get Book Here

Book Description
Quality Analysis of Additively Manufactured Metals: Simulation Approaches, Processes, and Microstructure Properties provides readers with a firm understanding of the failure and fatigue processes of additively manufactured metals. With a focus on computational methods, the book analyzes the process-microstructure-property relationship of these metals and how it affects their quality while also providing numerical, analytical, and experimental data for material design and investigation optimization. It outlines basic additive manufacturing processes for metals, strategies for modeling the microstructural features of metals and how these features differ based on the manufacturing process, and more.Improvement of additively manufactured metals through predictive simulation methods and microdamage and micro-failure in quasi-static and cyclic loading scenarios are covered, as are topology optimization methods and residual stress analysis techniques. The book concludes with a section featuring case studies looking at additively manufactured metals in automotive, biomedical and aerospace settings. - Provides insights and outlines techniques for analyzing why additively manufactured metals fail and strategies for avoiding those failures - Defines key terms and concepts related to the failure analysis, quality assurance and optimization processes of additively manufactured metals - Includes simulation results, experimental data and case studies

From Microstructure Investigations to Multiscale Modeling

From Microstructure Investigations to Multiscale Modeling PDF Author: Delphine Brancherie
Publisher: John Wiley & Sons
ISBN: 1786302594
Category : Science
Languages : en
Pages : 304

Get Book Here

Book Description
Mechanical behaviors of materials are highly influenced by their architectures and/or microstructures. Hence, progress in material science involves understanding and modeling the link between the microstructure and the material behavior at different scales. This book gathers contributions from eminent researchers in the field of computational and experimental material modeling. It presents advanced experimental techniques to acquire the microstructure features together with dedicated numerical and analytical tools to take into account the randomness of the micro-structure.

Manufacturing Engineering and Process VII

Manufacturing Engineering and Process VII PDF Author: Mario Kong
Publisher: Trans Tech Publications Ltd
ISBN: 3035733708
Category : Technology & Engineering
Languages : en
Pages : 144

Get Book Here

Book Description
The Conference on Manufacturing Engineering and Process is an annual international event to ensure interaction between scientists, engineers and also the dissemination of research results related to the materials science and modern materials synthesis and processing technologies. The 7th International Conference on Manufacturing Engineering and Process (ICMEP 2018) was held on February 5-7, 2018 in Barcelona, Spain.

Multi-scale Microstructure and Thermo-mechanical Characterization for Shape Memory Alloy Design Via Additive Manufacturing

Multi-scale Microstructure and Thermo-mechanical Characterization for Shape Memory Alloy Design Via Additive Manufacturing PDF Author: Beth Anna Last
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The layer-by-layer deposition process of additive manufacturing (AM) offers the capability to design material microstructures on multiple length scales. For NiTi shape memory alloys, designing material microstructures using AM would allow for unparalleled tailoring of the multiscale martensitic transformation and shape memory response. However, the laser-based directed energy deposition (LDED) AM technique produces localized microstructures which are distinct from those found in conventionally processed alloys. This work characterizes the grain and precipitate microstructures on multiple length scales for LDED fabricated NiTi alloys and assess the capability for tailoring the martensitic transformation morphology shape memory response through post-deposition heat treatments. Build coupons were fabricated by LDED AM using elementally blended Ni and Ti powder feedstock. The use of elemental powders allowed for a Ti-rich and a Ni-rich powder feedstock composition to be blended; thus, both shape memory effect (Ti-rich) and superelastic (Ni-rich) behaviors were investigated. Specimens were extracted from the fabricated build coupons to investigate the localized microstructure and shape memory behaviors. A full-field deformation analysis technique was employed to correlate the AM microstructure to the deformation mechanisms.The results of this work show that the NiTi LDED AM builds are inherently spatially varying on multiple microstructure length scales. The grain structure resulting from the AM process was similar for both feedstock compositions: fine grains within the interfacial regions formed by overlapping passes/layers and larger columnar grains within bulk regions (i.e. away from these interfaces). As a result of the spatially varying microstructure, as built LDED NiTi alloys exhibit a hardening like response and localized strain concentrations. Post-deposition heat treatment of the Ni-rich alloys reduced the spatial variation in the Ni4Ti3 precipitate microstructure and increased the localized superelastic strains compared to the as built condition, with the solutionizing and precipitation aging treatment resulting in the most spatially uniform Ni4Ti3 precipitate morphology. For the LDED alloys, shape memory effect recovery strains of 4.0 % (for Ti-rich alloys) and superelastic recovery strains of -6.0 % (for solutionized and aged Ni-rich alloys) were achieved.

Additive Manufacturing, Second Edition

Additive Manufacturing, Second Edition PDF Author: Amit Bandyopadhyay
Publisher: CRC Press
ISBN: 0429881010
Category : Technology & Engineering
Languages : en
Pages : 410

Get Book Here

Book Description
The field of additive manufacturing is growing dynamically as the interest is persisting from manufacturing sector, including other sectors as well. Conceptually, additive manufacturing is a way to build parts without using any part-specific tooling or dies from the computer-aided design (CAD) file of the part. Second edition of Additive Manufacturing highlights the latest advancements in the field, taking an application oriented approach. It includes new material on traditional polymer based rapid prototyping technologies, additive manufacturing of metals and alloys including related design issues. Each chapter comes with suggested reading, questions for instructors and PowerPoint slides.

Mechanical Properties and Characterization of Additively Manufactured Materials

Mechanical Properties and Characterization of Additively Manufactured Materials PDF Author: Ravi. K. Kumar
Publisher: CRC Press
ISBN: 1000928950
Category : Technology & Engineering
Languages : en
Pages : 341

Get Book Here

Book Description
The book highlights mechanical, thermal, electrical, and magnetic properties, and characterization of additive manufactured products in a single volume. It will serve as an ideal reference text for graduate students and academic researchers in diverse engineering fields including industrial, manufacturing, and materials science. This text Explains mechanical properties like hardness, tensile strength, impact strength, and flexural strength of additive manufactured components Discusses characterization of components fabricated by different additive manufacturing processes including fusion deposition modeling, and selective laser sintering Highlights corrosion behavior of additive manufactured polymers, metals, and composites Covers thermal, electrical, and magnetic properties of additively manufactured materials Illustrates intrinsic features and their Influence on mechanical properties of additive manufactured products This text discusses properties, wear behavior and characterization of components produced by additive manufacturing technology. These products find applications in diverse fields including design, manufacturing and tooling, aerospace, automotive industry, and biomedical industry. It will further help the readers in understanding the parameters that influence the mechanical behavior and characterization of components manufactured by additive manufacturing processes. It will serve as an ideal reference text for graduate students and academic researchers in the fields of industrial engineering, manufacturing engineering, automotive engineering, aerospace engineering, and materials science.

Microstructural Behavior and Multiscale Structure-property Relations for Cyclic Loading of Metallic Alloys Procured from Additive Manufacturing (Laser Engineered Net Shaping -- LENS)

Microstructural Behavior and Multiscale Structure-property Relations for Cyclic Loading of Metallic Alloys Procured from Additive Manufacturing (Laser Engineered Net Shaping -- LENS) PDF Author: Mohammad Ali Bagheri
Publisher:
ISBN:
Category :
Languages : en
Pages : 117

Get Book Here

Book Description
The goal of this study is to investigate the microstructure and microstructure-based fatigue (MSF) model of additively-manufactured (AM) metallic materials. Several challenges associated with different metals produced through additive manufacturing (Laser Enhanced Net Shaping – LENS®) have been addressed experimentally and numerically. Significant research efforts are focused on optimizing the process parameters for AM manufacturing; however, achieving a homogenous, defect-free AM product immediately after its fabrication without post-fabrication processing has not been fully established yet. Thus, in order to adopt AM materials for applications, a thorough understanding of the impact of AM process parameters on the mechanical behavior of AM parts based on their resultant microstructure is required. Therefore, experiments in this study elucidate the effects of process parameters – i.e. laser power, traverse speed and powder feed rate – on the microstructural characteristics and mechanical properties of AM specimens. A majority of fatigue data in the literature are on rotation/bending test of wrought specimens; however, few studies examined the fatigue behavior of AM specimens. So, investigating the fatigue resistance and failure mechanism of AM specimens fabricated via LENS® is crucial. Finally, a microstructure-based MultiStage Fatigue (MSF) model for AM specimens is proposed. For calibration of the model, fatigue experiments were exploited to determine structure-property relations for an AM alloy. Additional modifications to the microstructurally-based MSF Model were implemented based on microstructural analysis of the fracture surfaces – e.g. grain misorientation and grain orientation angles were added to the MSF code.

Additive Manufacturing Handbook

Additive Manufacturing Handbook PDF Author: Adedeji B. Badiru
Publisher: CRC Press
ISBN: 1351645390
Category : Technology & Engineering
Languages : en
Pages : 928

Get Book Here

Book Description
Theoretical and practical interests in additive manufacturing (3D printing) are growing rapidly. Engineers and engineering companies now use 3D printing to make prototypes of products before going for full production. In an educational setting faculty, researchers, and students leverage 3D printing to enhance project-related products. Additive Manufacturing Handbook focuses on product design for the defense industry, which affects virtually every other industry. Thus, the handbook provides a wide range of benefits to all segments of business, industry, and government. Manufacturing has undergone a major advancement and technology shift in recent years.

Additive Manufacturing

Additive Manufacturing PDF Author: Amit Bandyopadhyay
Publisher: CRC Press
ISBN: 1482223600
Category : Technology & Engineering
Languages : en
Pages : 404

Get Book Here

Book Description
The field of additive manufacturing has seen explosive growth in recent years due largely in part to renewed interest from the manufacturing sector. Conceptually, additive manufacturing, or industrial 3D printing, is a way to build parts without using any part-specific tooling or dies from the computer-aided design (CAD) file of the part. Today, mo