Modeling Injection Induced Fractures and Their Impact in CO2 Geological Storage

Modeling Injection Induced Fractures and Their Impact in CO2 Geological Storage PDF Author: Zhiyuan Luo
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Large-scale geologic CO2 storage is a technically feasible way to reduce anthropogenic emission of green house gas to atmosphere by human beings. In large-scale geologic CO2 sequestration, high injection rate is required to satisfy economics and operational considerations. During the injection phase, temperature and pressure of the storage aquifers may vary significantly with the introduced CO2. These changes would re-distribute the in-situ stresses in formations and induce fracture initiation or even propagation. If fractures are not permitted by regulators, then the injection operation strategies must be supervised and designed to prevent fracture initiation, and the storage formations should be screened for risk of fracturing. In more flexible regulatory environment, if fractures are allowed, fractures would strongly influence the CO2 migration profile and storage site usage efficiency depending on fracture length and growth rate. In this dissertation, we built analytical heat transfer models for vertical and horizontal injection wells. The models account for the dependency of overall heat transfer coefficient on injection rate to more accurately predict the borehole temperature. Based on these models, we can calculate temperature change in formation surrounding wellbores and thus evaluate thermo-elastic stress around borehole as well as its impact on fracture initiation pressure. By considering the impact of thermo-elastic effect on fracturing pressure, we predicted maximum injection rate avoiding fracture initiation and provided injection and storage strategies to increase the maximum safe injection rate. The results show that thermo-elastic stress significantly limits maximum injection rate for no-fractured injection scenario, especially for horizontal injectors. To improve injection rate, partial perforation and pre-heating CO2 before injection have been designed, and results shows that these strategies can strongly negate thermo-elastic influence for various injection scenarios. On the other hand, the model provides parametric analysis on geological and operational conditions of CO2 storage project for site screening work. In the case of permitting fracture occurrence, a semi-analytical model was built to quantitatively describe fracture propagation and injected fluid migration profile of a fractured vertical injector for storage systems with various boundary conditions. We examined the correlation between fracture growth and CO2 migration in various injection scenarios. Two-phase fractional flow model of Buckley-Leverett theory has been extended to account for the CO2-brine three-region flow system (dry CO2, CO2-brine, and brine) from a fractured injector. In the sensitivity study, fracture growth and fluid migration greatly depend on Young's modulus of the formation rock and storage site boundary conditions. Consequently, the results show that fast growing, long fractures may yield a flooding pattern with large aspect ratio, as well as early breakthrough at the drainage boundary; in contrast, slow growing short fractures provides high injectivity without changing flooded area shape. We studied the physics for issues related to injection induced fractures in geologic CO2 sequestration in saline aquifers, assessed risk associated to them and developed low cost and quick analytical models. These models could easily provide predictions on maximum injection rate in no-fracture regulation CO2 storage projects as well as estimate fracture growth and injected fluid migration under fracture allowable scenarios. "Preferred storage aquifers" have following properties: larger permeability, deep formation, no over pressure, low Young's modulus and low Poisson's ratio and open boundaries. In many practical cases, however, injection strategies have to be designed if some properties of formation are out of ideal range. Besides applications in CO2 storage, the approach and model we developed can also be applied into any injection induced fracture topics, namely water/CO2 flooding and wasted water re-injection

Modeling Injection Induced Fractures and Their Impact in CO2 Geological Storage

Modeling Injection Induced Fractures and Their Impact in CO2 Geological Storage PDF Author: Zhiyuan Luo
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Large-scale geologic CO2 storage is a technically feasible way to reduce anthropogenic emission of green house gas to atmosphere by human beings. In large-scale geologic CO2 sequestration, high injection rate is required to satisfy economics and operational considerations. During the injection phase, temperature and pressure of the storage aquifers may vary significantly with the introduced CO2. These changes would re-distribute the in-situ stresses in formations and induce fracture initiation or even propagation. If fractures are not permitted by regulators, then the injection operation strategies must be supervised and designed to prevent fracture initiation, and the storage formations should be screened for risk of fracturing. In more flexible regulatory environment, if fractures are allowed, fractures would strongly influence the CO2 migration profile and storage site usage efficiency depending on fracture length and growth rate. In this dissertation, we built analytical heat transfer models for vertical and horizontal injection wells. The models account for the dependency of overall heat transfer coefficient on injection rate to more accurately predict the borehole temperature. Based on these models, we can calculate temperature change in formation surrounding wellbores and thus evaluate thermo-elastic stress around borehole as well as its impact on fracture initiation pressure. By considering the impact of thermo-elastic effect on fracturing pressure, we predicted maximum injection rate avoiding fracture initiation and provided injection and storage strategies to increase the maximum safe injection rate. The results show that thermo-elastic stress significantly limits maximum injection rate for no-fractured injection scenario, especially for horizontal injectors. To improve injection rate, partial perforation and pre-heating CO2 before injection have been designed, and results shows that these strategies can strongly negate thermo-elastic influence for various injection scenarios. On the other hand, the model provides parametric analysis on geological and operational conditions of CO2 storage project for site screening work. In the case of permitting fracture occurrence, a semi-analytical model was built to quantitatively describe fracture propagation and injected fluid migration profile of a fractured vertical injector for storage systems with various boundary conditions. We examined the correlation between fracture growth and CO2 migration in various injection scenarios. Two-phase fractional flow model of Buckley-Leverett theory has been extended to account for the CO2-brine three-region flow system (dry CO2, CO2-brine, and brine) from a fractured injector. In the sensitivity study, fracture growth and fluid migration greatly depend on Young's modulus of the formation rock and storage site boundary conditions. Consequently, the results show that fast growing, long fractures may yield a flooding pattern with large aspect ratio, as well as early breakthrough at the drainage boundary; in contrast, slow growing short fractures provides high injectivity without changing flooded area shape. We studied the physics for issues related to injection induced fractures in geologic CO2 sequestration in saline aquifers, assessed risk associated to them and developed low cost and quick analytical models. These models could easily provide predictions on maximum injection rate in no-fracture regulation CO2 storage projects as well as estimate fracture growth and injected fluid migration under fracture allowable scenarios. "Preferred storage aquifers" have following properties: larger permeability, deep formation, no over pressure, low Young's modulus and low Poisson's ratio and open boundaries. In many practical cases, however, injection strategies have to be designed if some properties of formation are out of ideal range. Besides applications in CO2 storage, the approach and model we developed can also be applied into any injection induced fracture topics, namely water/CO2 flooding and wasted water re-injection

CO2 Injection in the Network of Carbonate Fractures

CO2 Injection in the Network of Carbonate Fractures PDF Author: J. Carlos de Dios
Publisher: Springer Nature
ISBN: 3030629864
Category : Technology & Engineering
Languages : en
Pages : 245

Get Book Here

Book Description
This book presents guidelines for the design, operation and monitoring of CO2 injection in fractured carbonates, with low permeability in the rock matrix, for geological storage in permanent trapping. CO2 migration is dominated by fractures in formations where the hydrodynamic and geochemical effects induced by the injection play a key role influencing the reservoir behavior. CO2 injection in these rocks shows specific characteristics that are different to injection in porous media, as the results from several research studies worldwide reveal. All aspects of a project of this type are discussed in this text, from the drilling to the injection, as well as support works like well logging, laboratory and field tests, modeling, and risk assessment. Examples are provided, lesson learned is detailed, and conclusions are drawn. This work is derived from the experience of international research teams and particularly from that gained during the design, construction and operation of Hontomín Technology Development Plant. Hontomín research pilot is currently the only active onshore injection site in the European Union, operated by Fundación Ciudad de la Energía-CIUDEN F.S.P. and recognized by the European Parliament as a key test facility. The authors provide guidelines and tools to enable readers to find solutions to their problems. The book covers activities relevant to a wide range of practitioners involved in reservoir exploration, modeling, site operation and monitoring. Fluid injection in fractured media shows specific features that are different than injection in porous media, influencing the reservoir behavior and defining conditions for safe and efficient operation. Therefore, this book is also useful to professionals working on oil & gas, hydrogeology and geothermal projects, and in general for those whose work is related to activities using fluid injection in the ground.

Investigation of Coupled Chemo-hydro-mechanical Processes with Discrete Element Modeling

Investigation of Coupled Chemo-hydro-mechanical Processes with Discrete Element Modeling PDF Author: Zhuang Sun
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Geological storage of CO2 is proposed as a near-term economically viable approach to mitigate CO2 emissions, and is an example of the coupled chemo-hydro-mechanical processes. Although CO2 injection and enhanced oil recovery are viewed as mature technologies in the oil and gas industry, investigation of all possible implications is necessary for secure and effective long-term CO2 storage. The injection of a large volume of CO2 into target storage formations is usually associated with a number of geomechanical processes that are initiated at the pore scale. Therefore, a pore-scale geomechanical model, i.e. Discrete Element Method (DEM), is of great importance to better understand the underlying pore-scale processes and mechanisms that govern the large-scale CO2 geological storage. In this work, we concentrate on several significant pore-scale coupled phenomena. Firstly, CO2 injection into geological formations involves chemo-mechanical processes and shifts the geochemical equilibrium between the minerals and resident brine, which subsequently induces mineral-brine-CO2 reactions and affects CO2 storage mechanical integrity. We utilize a numerical model that couples the Discrete Element Method (DEM) and the Bonded-Particle Model (BPM) to perform simulations on synthetic rocks that mimic tested rock samples. Numerical results, in agreement with experimental evidence, show that both cement and particle dissolution significantly contribute to rock weakening in sandstones with carbonate/hematite cements and pore-filling carbonate. Secondly, reservoir compaction involves hydro-mechanical processes that induce changes in porosity and permeability, and is a significant concern for the oil and gas production. We develop a grain crushing model based on the DEM to investigate the changes in porosity and permeability under the reservoir stress path. Grain crushing is shown to be the dominant mechanism for significant changes in porosity and permeability under a high effective stress. Samples consisting of large and soft grains tend to be more readily compacted. Finally, fluid injection in the subsurface may induce fractures and is another common hydro-mechanical process. We couple the Discrete Element Method (DEM) to solve for the mechanics of a solid granular medium and the Computational Fluid Dynamics (CFD) to model fluid flow and drag forces. We validate the resolved CFD-DEM numerical model against experiments from the literature and investigate the impact of physical properties and injection parameters. This work reveals how the pore-scale processes contribute to fluid-driven fracture initiation

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation PDF Author: Kamy Sepehrnoori
Publisher: Elsevier
ISBN: 0128196882
Category : Business & Economics
Languages : en
Pages : 306

Get Book Here

Book Description
The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs Offers understanding of the impacts of key reservoir properties and complex fractures on well performance Provides case studies to show how to use the EDFM method for different needs

Injection and Reservoir Hazard Management

Injection and Reservoir Hazard Management PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 69

Get Book Here

Book Description
The In Salah Gas Project (ISG), a joint venture (JV) of BP, Sonatrach, and StatoilHydro, has two fundamental goals: (1) 25-30 years of 9 bcfy natural gas production from 8 fields in the Algerian Central Sahara, and (2) successful minimization of the associated environmental footprint by capture and subsurface isolation of the excess CO2 extracted from production streams and subsurface isolation in the Krechba sandstone reservoir. The In Salah project provides an opportunity to study key physical and chemical processes in operational deployment of geological carbon sequestration. The objectives of the research are to study two components relevant to storage effectiveness and operational success at In Salah: Reactive chemistry of the brine-CO2-reservoir-caprock-wellbore system, and the geomechanical effects of large-scale injection on crustal deformation and fault leakage hazards. Results from this work will enhance predictive capability of field performance, provide a new basis for interpretation of geophysical monitoring at In Salah, and provide additional information relevant to the creation of geological sequestration standards. The Joint Industry Partners (JIP: BP, StatoilHydro, Sonatrach) and LLNL will share data and results to achieve the objectives of the proposed work. The objective of the work performed at LLNL is to integrate LLNL core strengths in geochemistry and geomechanics to better understand and predict the fate of injected CO2 in the field. The mechanical, chemical and transport properties of the reservoir-caprock system are coupled. We are using LLNL-developed quantitative tools to assess the potential for CO2 migration/leakage caused by injection-induced deformation. The geomechanical work is focused upon fault activation, fluid induced fracturing of the caprock and permeability field evolution of the fractured reservoir. These results will be used in concert with reactive transport calculations to predict the ultimate fate of the CO2. We will integrate laboratory and reactive transport modeling to assess CO2 plume migration and partitioning between different trapping mechanisms. Geochemical reactive transport modeling will be used to address multiphase flow (supercritical CO2 and water), CO2 dissolution, mineral sequestration, and porosity/permeability changes. The reactive transport portion of the work ultimately couples with geomechanical modeling. In particular, the distribution of the pressure perturbation induced by injection drives the geomechanical response. Subsequently, the geochemical work determines if water-rock interactions eventually enhance or suppress fractures. A key focus of this work is to establish the site specific interactions of geomechanics, reactive flow and transport. This involves building and refining models of the reservoir and overburden. The models will undergo continual refinement in response to data collected in the field and experiments performed at LLNL and elsewhere. This project commenced in FY08, with DOE funding starting in April, FY08. We have successfully initiated a cross-disciplinary study of the In Salah CO2 sequestration project and have met all FY08 and FY09 Q1, Q2 and Q3 milestones. During the reporting period, we continued to acquire and process data from the JIP to import into our own geomechanical and geochemical computational tools. The lab testing program continued using both locally formulated cements and field samples from Krechba. The geomechanical studies indicate that pore fluid pressures induced by injection will lead to significant permeability enhancement of the combination of fracture network and fault network within the reservoir in the vicinity of the injectors. We continued reactive transport calculations for CO2 rich fluids flowing through fractures. These calculations demonstrate that although porosity and permeability changes are expected in response to CO2 injection they are not anticipated to have a significant effect upon transport properties within the reservoir or caprock. The experimental program continued on schedule, providing refined estimates of the in situ quality of the wellbore cement composition in the field. These results will be used to inform estimates of the risk of wellbore seepage of CO2. Geomechanical analysis identified which faults are most likely flow conduits and which are expected to act as flow barriers for inclusion into reservoir models. Subsequent NUFT simulations were performed based upon this information and the results indicate that the presence of faults in the vicinity of the KB-502 injector may be responsible for the early breakthrough of CO2 observed at KB-5. Additionally, we have simulated the uplift of the overburden resulting from NUFT reservoir models of fluid injection and compared the results with the InSAR data.

Hydraulic Fracture Modeling

Hydraulic Fracture Modeling PDF Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128129999
Category : Technology & Engineering
Languages : en
Pages : 568

Get Book Here

Book Description
Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

Geophysics and Geosequestration

Geophysics and Geosequestration PDF Author: Thomas L. Davis
Publisher: Cambridge University Press
ISBN: 1107137497
Category : Business & Economics
Languages : en
Pages : 391

Get Book Here

Book Description
An overview of the geophysical techniques and analysis methods for monitoring subsurface carbon dioxide storage for researchers and industry practitioners.

Negative Emissions Technologies and Reliable Sequestration

Negative Emissions Technologies and Reliable Sequestration PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309484529
Category : Science
Languages : en
Pages : 511

Get Book Here

Book Description
To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.

Finite Elements in Fracture Mechanics

Finite Elements in Fracture Mechanics PDF Author: Meinhard Kuna
Publisher: Springer Science & Business Media
ISBN: 9400766807
Category : Science
Languages : en
Pages : 464

Get Book Here

Book Description
Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.

Principles of Applied Reservoir Simulation

Principles of Applied Reservoir Simulation PDF Author: John R. Fanchi
Publisher: Elsevier
ISBN: 0750679336
Category : Business & Economics
Languages : en
Pages : 530

Get Book Here

Book Description
Simulate reservoirs effectively to extract the maximum oil, gas and profit, with this book and free simlation software on companion web site.