Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion

Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion PDF Author: Ramesh K. Agarwal
Publisher: Springer
ISBN: 9783031113345
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
The book describes the clean coal technology of chemical looping combustion (CLC) for power generation with pure CO2 capture. The focus of the book is on the modeling and simulation of CLC. It includes fundamental concepts behind CLC and considers all categories of fluidized beds and reactors, including a variety of oxygen carriers. The book includes process simulations with Aspen Plus® software using coal, natural gas, and biomass and computational fluid dynamics (CFD) simulations using both the Eulerian and Lagrangian methods. It describes various drag models, turbulence models, and kinetics models required for CFD simulations of CLC and covers single reactor, partial, and full-simulations, single/multi-stage as well as single-particle simulations, and CLC with reverse flow. A large number of examples for both process simulations using Aspen Plus and CFD simulations using a variety of fluidized beds/reactors employing both the two-fluid and Computational Fluid Dynamics / Discrete Element Method (CFD-DEM) model are provided. Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion will be an invaluable reference for industry practitioners and researchers in academic and industrial R&D currently working on clean energy technologies and power generation with carbon capture.

Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion

Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion PDF Author: Ramesh K. Agarwal
Publisher: Springer
ISBN: 9783031113345
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
The book describes the clean coal technology of chemical looping combustion (CLC) for power generation with pure CO2 capture. The focus of the book is on the modeling and simulation of CLC. It includes fundamental concepts behind CLC and considers all categories of fluidized beds and reactors, including a variety of oxygen carriers. The book includes process simulations with Aspen Plus® software using coal, natural gas, and biomass and computational fluid dynamics (CFD) simulations using both the Eulerian and Lagrangian methods. It describes various drag models, turbulence models, and kinetics models required for CFD simulations of CLC and covers single reactor, partial, and full-simulations, single/multi-stage as well as single-particle simulations, and CLC with reverse flow. A large number of examples for both process simulations using Aspen Plus and CFD simulations using a variety of fluidized beds/reactors employing both the two-fluid and Computational Fluid Dynamics / Discrete Element Method (CFD-DEM) model are provided. Modeling and Simulation of Fluidized Bed Reactors for Chemical Looping Combustion will be an invaluable reference for industry practitioners and researchers in academic and industrial R&D currently working on clean energy technologies and power generation with carbon capture.

Computational Fluid Dynamics Modeling and Simulations of Fluidized Bed Reactors for Chemical Looping Combustion

Computational Fluid Dynamics Modeling and Simulations of Fluidized Bed Reactors for Chemical Looping Combustion PDF Author: Subhodeep Banerjee
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 102

Get Book Here

Book Description
Chemical looping combustion (CLC) is a next generation combustion technology that shows great promise as a solution for the need of high-efficiency low-cost carbon capture from fossil fueled power plants. To realize this technology on an industrial scale, the development of high-fidelity simulations is a necessary step to develop a thorough understanding of the CLC process. Although there have been a number of experimental studies on CLC in recent years, CFD simulations have been limited in the literature.In this dissertation, reacting flow simulations of a CLC reactor are developed using the Eulerian approach based on a laboratory-scale experiment of a dual fluidized bed CLC system. The salient features of the fluidization behavior in the air reactor and fuel reactor beds representing a riser and a bubbling bed respectively are accurately captured in the simulation. This work is one of the first 3-D simulations of a complete circulating dual fluidized bed system; it highlights the importance of conducting 3-D simulations of CLC systems and the need for more accurate empirical reaction rate data for future CLC simulations.Simulations of the multiphase flow with chemical reactions in a spouted bed fuel reactor for coal-direct CLC are performed based on the Lagrangian particle tracking approach. The Discrete Element Method (DEM) provides the means for tracking the motion of individual metal oxide particles in the CLC system as they react with the fuel and is coupled with CFD for capturing the solid-gas multiphase hydrodynamics. The overall results of the coupled CFD-DEM simulations using Fe-based oxygen carriers reacting with gaseous CH4 demonstrate that chemical reactions have been successfully incorporated into the CFD-DEM approach. The simulations show a strong dependence of the fluidization performance of the fuel reactor on the density of bed material and provide important insight into selecting the right oxygen carrier for the enhanced performance.Given the high computing cost of CFD-DEM, it is necessary to develop a scaling methodology based on the principles of dynamic similarity that can be applied to expand the scope of this approach to larger CLC systems up to the industrial scale. A new scaling methodology based on the terminal velocity is proposed for spouted fluidized beds. Simulations of a laboratory-scale spouted fluidized bed are used to characterize the performance of the new scaling law in comparison with existing scaling laws in the literature. It is shown that the new model improves the accuracy of the simulation results compared to the other scaling methodologies while also providing the largest reduction in the number of particles and in turn in the computing cost.CFD-DEM simulations are conducted of the binary particle bed associated with a coal-direct CLC system consisting of coal (represented by plastic beads) and oxygen carrier particles and validated against an experimental riser-based carbon stripper. The simulation results of the particle behavior and the separation ratio of the particles are in excellent agreement with the experiment. A credible simulation of a binary particle bed is of particular importance for understanding the details of the fluidization behavior; the baseline simulation established in this work can be used as a tool for designing and optimizing the performance of such systems.The simulations conducted in this dissertation provide a strong foundation for future simulations of CD-CLC systems using solid coal as fuel, considering the additional complexities associated with the changing density and diameter of the coal particles as devolatilization and gasification process occur. A complete reacting flow simulation in the CFD-DEM framework will be crucial for the successful deployment of CD-CLC technology from the laboratory scale to pilot and industrial scale projects.

Dynamic Simulation of the Chemical Looping Combustion Process

Dynamic Simulation of the Chemical Looping Combustion Process PDF Author: Johannes Haus
Publisher: Cuvillier Verlag
ISBN: 3736963351
Category : Technology & Engineering
Languages : en
Pages : 140

Get Book Here

Book Description
In this Ph.D. thesis a system of coupled fluidized bed reactors is modelled and simulated dynamically. Chemical Looping Combustion was used as an exemplary process in both the numerical and the experimental part of this work. For the simulation purpose a novel flowsheeting software was used and models for the needed process units developed and integrated into this software. The needed unit models were three interconnected fluidized bed reactors in circulating and bubbling operation conditions, a cyclone for gas-solid separation and loop seals, which ensured solids transport and gas separation between the reactors. Additionally, lab scale experiments on the reactivity of the used solids, oxygen carrier and solid fuels, were conducted and kinetic parameters extracted. All unit models were connected to a process flowsheet and simulated dynamically. The simulation results were compared to experimental data from a 25 kWth pilot plant operated at the university by the author. It could be shown that a detailed and dynamic simulation of the whole process can be carried out over a time period of more than 45 minutes and the experimental results from start-up, steady state operation and shutdown of the plant were predicted accurately.

Handbook of Chemical Looping Technology

Handbook of Chemical Looping Technology PDF Author: Ronald W. Breault
Publisher: John Wiley & Sons
ISBN: 3527342028
Category : Business & Economics
Languages : en
Pages : 488

Get Book Here

Book Description
This comprehensive and up-to-date handbook on this highly topical field, covering everything from new process concepts to commercial applications. Describing novel developments as well as established methods, the authors start with the evaluation of different oxygen carriers and subsequently illuminate various technological concepts for the energy conversion process. They then go on to discuss the potential for commercial applications in gaseous, coal, and fuel combustion processes in industry. The result is an invaluable source for every scientist in the field, from inorganic chemists in academia to chemical engineers in industry.

Chemical Looping Combustion in Interconnected Fluidized Bed Reactors - Simulation and Experimental Validation

Chemical Looping Combustion in Interconnected Fluidized Bed Reactors - Simulation and Experimental Validation PDF Author: Marvin Kramp
Publisher:
ISBN: 9783843918039
Category :
Languages : de
Pages : 181

Get Book Here

Book Description


CFD Simulation of Chemical Looping Combustion System

CFD Simulation of Chemical Looping Combustion System PDF Author: Md Helal Uddin
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 490

Get Book Here

Book Description
In this dissertation, a conceptual design is developed that leads to fabrication of a 100-kWth semi-batch CLC prototype unit by ZERE Energy and Biofuels, Inc. San Jose, California. The hydrodynamics of the prototype unit are extensively studied using mathematical modeling and CFD. A multi-stage numerical model has been developed to investigate the behavior of a fuel reactor used in CLC unit. To predict the behavior of mass transfer in the CLC reactor, a combination of perturbation theory and semi-empirical correlation is suggested. Much of the work presented in this dissertation is focused on improving the ability to use CFD for process development. The grid size used in numerical simulations should be sufficiently small so that the meso-scale structures prevailing in the gas-fluidized beds can be captured explicitly. This restricts CFD in studying industrial-scale fluidized bed reactors. Thus, a generalized grid size that is sufficient to obtain a grid-independent solution of two-fluid CFD model is suggested in this study. In order to fully understand the complex interaction between fluid phases of CFD models, a 3-D face-masking algorithm is developed and applied to assist post-processing CFD results for identification and tracking of gas bubbles in a fluidized bed. Finally, the hydrodynamics of multiphase flow reactor at high-temperature is investigated through the particle-particle restitution coefficient in numerical simulations. In conclusion, findings of this dissertation will be useful for scale-up, design, or process optimization for reliable commercial CLC plants reducing economic risk, and potentially allowing for rapid scale-up.

Fluidized-Bed Reactors: Processes and Operating Conditions

Fluidized-Bed Reactors: Processes and Operating Conditions PDF Author: John G. Yates
Publisher: Springer
ISBN: 3319395939
Category : Science
Languages : en
Pages : 214

Get Book Here

Book Description
The fluidized-bed reactor is the centerpiece of industrial fluidization processes. This book focuses on the design and operation of fluidized beds in many different industrial processes, emphasizing the rationale for choosing fluidized beds for each particular process. The book starts with a brief history of fluidization from its inception in the 1940’s. The authors present both the fluid dynamics of gas-solid fluidized beds and the extensive experimental studies of operating systems and they set them in the context of operating processes that use fluid-bed reactors. Chemical engineering students and postdocs as well as practicing engineers will find great interest in this book.

Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification

Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification PDF Author: Fabrizio Scala
Publisher: Elsevier
ISBN: 0857098802
Category : Technology & Engineering
Languages : en
Pages : 1091

Get Book Here

Book Description
Fluidized bed (FB) combustion and gasification are advanced techniques for fuel flexible, high efficiency and low emission conversion. Fuels are combusted or gasified as a fluidized bed suspended by jets with sorbents that remove harmful emissions such as SOx. CO2 capture can also be incorporated. Fluidized bed technologies for near-zero emission combustion and gasification provides an overview of established FB technologies while also detailing recent developments in the field. Part one, an introductory section, reviews fluidization science and FB technologies and includes chapters on particle characterization and behaviour, properties of stationary and circulating fluidized beds, heat and mass transfer and attrition in FB combustion and gasification systems. Part two expands on this introduction to explore the fundamentals of FB combustion and gasification including the conversion of solid, liquid and gaseous fuels, pollutant emission and reactor design and scale up. Part three highlights recent advances in a variety of FB combustion and gasification technologies before part four moves on to focus on emerging CO2 capture technologies. Finally, part five explores other applications of FB technology including (FB) petroleum refining and chemical production. Fluidized bed technologies for near-zero emission combustion and gasification is a technical resource for power plant operators, industrial engineers working with fluidized bed combustion and gasification systems and researchers, scientists and academics in the field. Examines the fundamentals of fluidized bed (FB) technologies, including the conversion of solid, liquid and gaseous fuels Explores recent advances in a variety of technologies such as pressurized FB combustion, and the measurement, monitoring and control of FB combustion and gasification Discusses emerging technologies and examines applications of FB in other processes

Modeling and Simulation of Catalytic Reactors for Petroleum Refining

Modeling and Simulation of Catalytic Reactors for Petroleum Refining PDF Author: Jorge Ancheyta
Publisher: John Wiley & Sons
ISBN: 1118002164
Category : Technology & Engineering
Languages : en
Pages : 449

Get Book Here

Book Description
Modeling and Simulation of Catalytic Reactors for Petroleum Refining deals with fundamental descriptions of the main conversion processes employed in the petroleum refining industry: catalytic hydrotreating, catalytic reforming, and fluid catalytic cracking. Common approaches for modeling of catalytic reactors for steady-state and dynamic simulations are also described and analyzed. Aspects such as thermodynamics, reaction kinetics, process variables, process scheme, and reactor design are discussed in detail from both research and commercial points of view. Results of simulation with the developed models are compared with those determined at pilot plant scale as well as commercial practice. Kinetics data used in the reactor model are either taken from the literature or obtained under controlled experiments at the laboratory.

Computational Flow Modeling for Chemical Reactor Engineering

Computational Flow Modeling for Chemical Reactor Engineering PDF Author: Vivek V. Ranade
Publisher: Academic Press
ISBN: 0125769601
Category : Science
Languages : en
Pages : 476

Get Book Here

Book Description
The book relates the individual aspects of chemical reactor engineering and computational flow modeling in a coherent way to explain the potential of computational flow modeling for reactor engineering research and practice.