Author: V. G. Kulkarni
Publisher: Springer
ISBN: 1441917721
Category : Mathematics
Languages : en
Pages : 323
Book Description
This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.
Introduction to Modeling and Analysis of Stochastic Systems
Author: V. G. Kulkarni
Publisher: Springer
ISBN: 1441917721
Category : Mathematics
Languages : en
Pages : 323
Book Description
This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.
Publisher: Springer
ISBN: 1441917721
Category : Mathematics
Languages : en
Pages : 323
Book Description
This book provides a self-contained review of all the relevant topics in probability theory. A software package called MAXIM, which runs on MATLAB, is made available for downloading. Vidyadhar G. Kulkarni is Professor of Operations Research at the University of North Carolina at Chapel Hill.
Stochastic Modeling
Author: Barry L. Nelson
Publisher: Courier Corporation
ISBN: 0486139948
Category : Mathematics
Languages : en
Pages : 338
Book Description
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.
Publisher: Courier Corporation
ISBN: 0486139948
Category : Mathematics
Languages : en
Pages : 338
Book Description
Coherent introduction to techniques also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Includes formulation of models, analysis, and interpretation of results. 1995 edition.
An Introduction to Stochastic Modeling
Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410
Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410
Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Linear Stochastic Systems
Author: Anders Lindquist
Publisher: Springer
ISBN: 3662457504
Category : Science
Languages : en
Pages : 788
Book Description
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.
Publisher: Springer
ISBN: 3662457504
Category : Science
Languages : en
Pages : 788
Book Description
This book presents a treatise on the theory and modeling of second-order stationary processes, including an exposition on selected application areas that are important in the engineering and applied sciences. The foundational issues regarding stationary processes dealt with in the beginning of the book have a long history, starting in the 1940s with the work of Kolmogorov, Wiener, Cramér and his students, in particular Wold, and have since been refined and complemented by many others. Problems concerning the filtering and modeling of stationary random signals and systems have also been addressed and studied, fostered by the advent of modern digital computers, since the fundamental work of R.E. Kalman in the early 1960s. The book offers a unified and logically consistent view of the subject based on simple ideas from Hilbert space geometry and coordinate-free thinking. In this framework, the concepts of stochastic state space and state space modeling, based on the notion of the conditional independence of past and future flows of the relevant signals, are revealed to be fundamentally unifying ideas. The book, based on over 30 years of original research, represents a valuable contribution that will inform the fields of stochastic modeling, estimation, system identification, and time series analysis for decades to come. It also provides the mathematical tools needed to grasp and analyze the structures of algorithms in stochastic systems theory.
Modeling, Analysis, Design, and Control of Stochastic Systems
Author: V. G. Kulkarni
Publisher: Springer
ISBN: 1475730985
Category : Technology & Engineering
Languages : en
Pages : 381
Book Description
An introductory level text on stochastic modelling, suited for undergraduates or graduates in actuarial science, business management, computer science, engineering, operations research, public policy, statistics, and mathematics. It employs a large number of examples to show how to build stochastic models of physical systems, analyse these models to predict their performance, and use the analysis to design and control them. The book provides a self-contained review of the relevant topics in probability theory: In discrete and continuous time Markov models it covers the transient and long term behaviour, cost models, and first passage times; under generalised Markov models, it covers renewal processes, cumulative processes and semi-Markov processes. All the material is illustrated with many examples, and the book emphasises numerical answers to the problems. A software package called MAXIM, which runs on MATLAB, is available for downloading.
Publisher: Springer
ISBN: 1475730985
Category : Technology & Engineering
Languages : en
Pages : 381
Book Description
An introductory level text on stochastic modelling, suited for undergraduates or graduates in actuarial science, business management, computer science, engineering, operations research, public policy, statistics, and mathematics. It employs a large number of examples to show how to build stochastic models of physical systems, analyse these models to predict their performance, and use the analysis to design and control them. The book provides a self-contained review of the relevant topics in probability theory: In discrete and continuous time Markov models it covers the transient and long term behaviour, cost models, and first passage times; under generalised Markov models, it covers renewal processes, cumulative processes and semi-Markov processes. All the material is illustrated with many examples, and the book emphasises numerical answers to the problems. A software package called MAXIM, which runs on MATLAB, is available for downloading.
Modelling and Application of Stochastic Processes
Author: Uday B. Desai
Publisher: Springer Science & Business Media
ISBN: 9780898381771
Category : Science
Languages : en
Pages : 310
Book Description
The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side, chapters on use of Markov random fields for modelling and analyzing image signals, use of complementary models for the smoothing problem with missing data, and nonlinear estimation are included. Chapter 1 by Klein and Dickinson develops the nested orthogonal state space realization for ARMA processes. As suggested by the name, nested orthogonal realizations possess two key properties; (i) the state variables are orthogonal, and (ii) the system matrices for the (n + l)st order realization contain as their "upper" n-th order blocks the system matrices from the n-th order realization (nesting property).
Publisher: Springer Science & Business Media
ISBN: 9780898381771
Category : Science
Languages : en
Pages : 310
Book Description
The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side, chapters on use of Markov random fields for modelling and analyzing image signals, use of complementary models for the smoothing problem with missing data, and nonlinear estimation are included. Chapter 1 by Klein and Dickinson develops the nested orthogonal state space realization for ARMA processes. As suggested by the name, nested orthogonal realizations possess two key properties; (i) the state variables are orthogonal, and (ii) the system matrices for the (n + l)st order realization contain as their "upper" n-th order blocks the system matrices from the n-th order realization (nesting property).
Markov Processes for Stochastic Modeling
Author: Oliver Ibe
Publisher: Newnes
ISBN: 0124078397
Category : Mathematics
Languages : en
Pages : 515
Book Description
Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.
Publisher: Newnes
ISBN: 0124078397
Category : Mathematics
Languages : en
Pages : 515
Book Description
Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.
Stochastic Modelling and Analysis
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Stochastic Discrete Event Systems
Author: Armin Zimmermann
Publisher: Springer Science & Business Media
ISBN: 3540741739
Category : Computers
Languages : en
Pages : 393
Book Description
Stochastic discrete-event systems (SDES) capture the randomness in choices due to activity delays and the probabilities of decisions. This book delivers a comprehensive overview on modeling with a quantitative evaluation of SDES. It presents an abstract model class for SDES as a pivotal unifying result and details important model classes. The book also includes nontrivial examples to explain real-world applications of SDES.
Publisher: Springer Science & Business Media
ISBN: 3540741739
Category : Computers
Languages : en
Pages : 393
Book Description
Stochastic discrete-event systems (SDES) capture the randomness in choices due to activity delays and the probabilities of decisions. This book delivers a comprehensive overview on modeling with a quantitative evaluation of SDES. It presents an abstract model class for SDES as a pivotal unifying result and details important model classes. The book also includes nontrivial examples to explain real-world applications of SDES.
Complex Stochastic Systems
Author: O.E. Barndorff-Nielsen
Publisher: CRC Press
ISBN: 9781420035988
Category : Mathematics
Languages : en
Pages : 306
Book Description
Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications. A Primer on Markov Chain Monte Carlo by Peter J. Green provides a wide-ranging mixture of the mathematical and statistical ideas, enriched with concrete examples and more than 100 references. Causal Inference from Graphical Models by Steffen L. Lauritzen explores causal concepts in connection with modelling complex stochastic systems, with focus on the effect of interventions in a given system. State Space and Hidden Markov Models by Hans R. Künschshows the variety of applications of this concept to time series in engineering, biology, finance, and geophysics. Monte Carlo Methods on Genetic Structures by Elizabeth A. Thompson investigates special complex systems and gives a concise introduction to the relevant biological methodology. Renormalization of Interacting Diffusions by Frank den Hollander presents recent results on the large space-time behavior of infinite systems of interacting diffusions. Stein's Method for Epidemic Processes by Gesine Reinert investigates the mean field behavior of a general stochastic epidemic with explicit bounds. Individually, these articles provide authoritative, tutorial-style exposition and recent results from various subjects related to complex stochastic systems. Collectively, they link these separate areas of study to form the first comprehensive overview of this rapidly developing field.
Publisher: CRC Press
ISBN: 9781420035988
Category : Mathematics
Languages : en
Pages : 306
Book Description
Complex stochastic systems comprises a vast area of research, from modelling specific applications to model fitting, estimation procedures, and computing issues. The exponential growth in computing power over the last two decades has revolutionized statistical analysis and led to rapid developments and great progress in this emerging field. In Complex Stochastic Systems, leading researchers address various statistical aspects of the field, illustrated by some very concrete applications. A Primer on Markov Chain Monte Carlo by Peter J. Green provides a wide-ranging mixture of the mathematical and statistical ideas, enriched with concrete examples and more than 100 references. Causal Inference from Graphical Models by Steffen L. Lauritzen explores causal concepts in connection with modelling complex stochastic systems, with focus on the effect of interventions in a given system. State Space and Hidden Markov Models by Hans R. Künschshows the variety of applications of this concept to time series in engineering, biology, finance, and geophysics. Monte Carlo Methods on Genetic Structures by Elizabeth A. Thompson investigates special complex systems and gives a concise introduction to the relevant biological methodology. Renormalization of Interacting Diffusions by Frank den Hollander presents recent results on the large space-time behavior of infinite systems of interacting diffusions. Stein's Method for Epidemic Processes by Gesine Reinert investigates the mean field behavior of a general stochastic epidemic with explicit bounds. Individually, these articles provide authoritative, tutorial-style exposition and recent results from various subjects related to complex stochastic systems. Collectively, they link these separate areas of study to form the first comprehensive overview of this rapidly developing field.