Author: Kaustubh Vaman Sakhare
Publisher: CRC Press
ISBN: 1040096476
Category : Computers
Languages : en
Pages : 159
Book Description
With the emergence of the data economy, information has become integral to business excellence. Every enterprise, irrespective of its domain of interest, carries and processes a lot of data in their day-to-day activities. Converting massive datasets into insightful information plays an important role in developing better business solutions. Data intelligence and its analysis pose several challenges in data representation, building knowledge systems, issue resolution and predictive systems for trend analysis and decisionmaking. The data available could be of any modality, especially when data is associated with healthcare, biomedical, finance, retail, cybersecurity, networking, supply chain management, manufacturing, etc. The optimization of such systems is therefore crucial to leveraging the best outcomes and conclusions. To this end, AI-based nature-inspired optimization methods or approximation-based optimization methods are becoming very powerful. Notable metaheuristics include genetic algorithms, differential evolution, ant colony optimization, particle swarm optimization, artificial bee colony, grey wolf optimizer, political optimizer, cohort intelligence and league championship algorithm. This book provides a systematic discussion of AI-based metaheuristics application in a wide range of areas, including big data intelligence and predictive analytics, enterprise analytics, graph optimization algorithms, machine learning and ensemble learning, computer vision enterprise practices and data benchmarking.
Metaheuristics for Enterprise Data Intelligence
Author: Kaustubh Vaman Sakhare
Publisher: CRC Press
ISBN: 1040096476
Category : Computers
Languages : en
Pages : 159
Book Description
With the emergence of the data economy, information has become integral to business excellence. Every enterprise, irrespective of its domain of interest, carries and processes a lot of data in their day-to-day activities. Converting massive datasets into insightful information plays an important role in developing better business solutions. Data intelligence and its analysis pose several challenges in data representation, building knowledge systems, issue resolution and predictive systems for trend analysis and decisionmaking. The data available could be of any modality, especially when data is associated with healthcare, biomedical, finance, retail, cybersecurity, networking, supply chain management, manufacturing, etc. The optimization of such systems is therefore crucial to leveraging the best outcomes and conclusions. To this end, AI-based nature-inspired optimization methods or approximation-based optimization methods are becoming very powerful. Notable metaheuristics include genetic algorithms, differential evolution, ant colony optimization, particle swarm optimization, artificial bee colony, grey wolf optimizer, political optimizer, cohort intelligence and league championship algorithm. This book provides a systematic discussion of AI-based metaheuristics application in a wide range of areas, including big data intelligence and predictive analytics, enterprise analytics, graph optimization algorithms, machine learning and ensemble learning, computer vision enterprise practices and data benchmarking.
Publisher: CRC Press
ISBN: 1040096476
Category : Computers
Languages : en
Pages : 159
Book Description
With the emergence of the data economy, information has become integral to business excellence. Every enterprise, irrespective of its domain of interest, carries and processes a lot of data in their day-to-day activities. Converting massive datasets into insightful information plays an important role in developing better business solutions. Data intelligence and its analysis pose several challenges in data representation, building knowledge systems, issue resolution and predictive systems for trend analysis and decisionmaking. The data available could be of any modality, especially when data is associated with healthcare, biomedical, finance, retail, cybersecurity, networking, supply chain management, manufacturing, etc. The optimization of such systems is therefore crucial to leveraging the best outcomes and conclusions. To this end, AI-based nature-inspired optimization methods or approximation-based optimization methods are becoming very powerful. Notable metaheuristics include genetic algorithms, differential evolution, ant colony optimization, particle swarm optimization, artificial bee colony, grey wolf optimizer, political optimizer, cohort intelligence and league championship algorithm. This book provides a systematic discussion of AI-based metaheuristics application in a wide range of areas, including big data intelligence and predictive analytics, enterprise analytics, graph optimization algorithms, machine learning and ensemble learning, computer vision enterprise practices and data benchmarking.
Graph Coloring
Author: Maurice Clerc
Publisher: CRC Press
ISBN: 1040256783
Category : Computers
Languages : en
Pages : 145
Book Description
This book explores the problem of minimal valid graph coloring, first in the form of games and then of resolution algorithms. Emphasis is placed on deterministic, guaranteed and non-guaranteed methods. Stochastic methods are then just mentioned because they are already widely described in previous publications. The study then details a general quantum algorithm of polynomial complexity. A final chapter provides elements of reflection on diplomatic algorithms that, for the problem of coloring under resource constraints, seek a compromise minimizing frustrations. The appendix includes some mathematical additions and the source codes of the main algorithms presented, in particular the one of the quantum method.
Publisher: CRC Press
ISBN: 1040256783
Category : Computers
Languages : en
Pages : 145
Book Description
This book explores the problem of minimal valid graph coloring, first in the form of games and then of resolution algorithms. Emphasis is placed on deterministic, guaranteed and non-guaranteed methods. Stochastic methods are then just mentioned because they are already widely described in previous publications. The study then details a general quantum algorithm of polynomial complexity. A final chapter provides elements of reflection on diplomatic algorithms that, for the problem of coloring under resource constraints, seek a compromise minimizing frustrations. The appendix includes some mathematical additions and the source codes of the main algorithms presented, in particular the one of the quantum method.
Automatic Generation Of Algorithms
Author: Victor Parada
Publisher: CRC Press
ISBN: 104030706X
Category : Computers
Languages : en
Pages : 215
Book Description
In the rapidly evolving domain of computational problem-solving, this book delves into the cutting-edge Automatic Generation of Algorithms (AGA) paradigm, a groundbreaking approach poised to redefine algorithm design for optimization problems. Spanning combinatorial optimization, machine learning, genetic programming, and beyond, it investigates AGA's transformative capabilities across diverse application areas. The book initiates by introducing fundamental combinatorial optimization concepts and NPhardness significance, laying the foundation for understanding AGA's necessity and potential. It then scrutinizes the pivotal Master Problem concept in AGA and the art of modeling for algorithm generation. The exploration progresses with integrating genetic programming and synergizing AGA with evolutionary computing. Subsequent chapters delve into the AGA-machine learning intersection, highlighting their shared optimization foundation while contrasting divergent objectives. The automatic generation of metaheuristics is examined, aiming to develop versatile algorithmic frameworks adaptable to various optimization problems. Furthermore, the book explores applying reinforcement learning techniques to automatic algorithm generation. Throughout, it invites readers to reimagine algorithmic design boundaries, offering insights into AGA's conceptual underpinnings, practical applications, and future directions, serving as an invitation for researchers, practitioners, and enthusiasts in computer science, operations research, artificial intelligence, and beyond to embark on a journey toward computational excellence where algorithms are born, evolved, and adapted to meet ever-changing real-world problem landscapes.
Publisher: CRC Press
ISBN: 104030706X
Category : Computers
Languages : en
Pages : 215
Book Description
In the rapidly evolving domain of computational problem-solving, this book delves into the cutting-edge Automatic Generation of Algorithms (AGA) paradigm, a groundbreaking approach poised to redefine algorithm design for optimization problems. Spanning combinatorial optimization, machine learning, genetic programming, and beyond, it investigates AGA's transformative capabilities across diverse application areas. The book initiates by introducing fundamental combinatorial optimization concepts and NPhardness significance, laying the foundation for understanding AGA's necessity and potential. It then scrutinizes the pivotal Master Problem concept in AGA and the art of modeling for algorithm generation. The exploration progresses with integrating genetic programming and synergizing AGA with evolutionary computing. Subsequent chapters delve into the AGA-machine learning intersection, highlighting their shared optimization foundation while contrasting divergent objectives. The automatic generation of metaheuristics is examined, aiming to develop versatile algorithmic frameworks adaptable to various optimization problems. Furthermore, the book explores applying reinforcement learning techniques to automatic algorithm generation. Throughout, it invites readers to reimagine algorithmic design boundaries, offering insights into AGA's conceptual underpinnings, practical applications, and future directions, serving as an invitation for researchers, practitioners, and enthusiasts in computer science, operations research, artificial intelligence, and beyond to embark on a journey toward computational excellence where algorithms are born, evolved, and adapted to meet ever-changing real-world problem landscapes.
Metaheuristics for Business Analytics
Author: Abraham Duarte
Publisher: Springer
ISBN: 3319681192
Category : Business & Economics
Languages : en
Pages : 142
Book Description
This essential metaheuristics tutorial provides descriptions and practical applications in the area of business analytics. It addresses key problems in predictive and prescriptive analysis, while also illustrating how problems that arise in business analytics can be modelled and how metaheuristics can be used to find high-quality solutions. Readers will be introduced to decision-making problems for which metaheuristics offer the most effective solution technique. The book not only shows business problem modelling on a spreadsheet but also how to design and create a Visual Basic for Applications code. Extra Material can be downloaded at http://extras.springer.com/978-3-319-68117-7.
Publisher: Springer
ISBN: 3319681192
Category : Business & Economics
Languages : en
Pages : 142
Book Description
This essential metaheuristics tutorial provides descriptions and practical applications in the area of business analytics. It addresses key problems in predictive and prescriptive analysis, while also illustrating how problems that arise in business analytics can be modelled and how metaheuristics can be used to find high-quality solutions. Readers will be introduced to decision-making problems for which metaheuristics offer the most effective solution technique. The book not only shows business problem modelling on a spreadsheet but also how to design and create a Visual Basic for Applications code. Extra Material can be downloaded at http://extras.springer.com/978-3-319-68117-7.
Recent Advances in Hybrid Metaheuristics for Data Clustering
Author: Sourav De
Publisher: John Wiley & Sons
ISBN: 1119551609
Category : Computers
Languages : en
Pages : 196
Book Description
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.
Publisher: John Wiley & Sons
ISBN: 1119551609
Category : Computers
Languages : en
Pages : 196
Book Description
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.
Recent Advances in Hybrid Metaheuristics for Data Clustering
Author: Sourav De
Publisher: John Wiley & Sons
ISBN: 1119551617
Category : Computers
Languages : en
Pages : 199
Book Description
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.
Publisher: John Wiley & Sons
ISBN: 1119551617
Category : Computers
Languages : en
Pages : 199
Book Description
An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.
Metaheuristics
Author: Karl F. Doerner
Publisher: Springer Science & Business Media
ISBN: 0387719210
Category : Mathematics
Languages : en
Pages : 409
Book Description
This book’s aim is to provide several different kinds of information: a delineation of general metaheuristics methods, a number of state-of-the-art articles from a variety of well-known classical application areas as well as an outlook to modern computational methods in promising new areas. Therefore, this book may equally serve as a textbook in graduate courses for students, as a reference book for people interested in engineering or social sciences, and as a collection of new and promising avenues for researchers working in this field.
Publisher: Springer Science & Business Media
ISBN: 0387719210
Category : Mathematics
Languages : en
Pages : 409
Book Description
This book’s aim is to provide several different kinds of information: a delineation of general metaheuristics methods, a number of state-of-the-art articles from a variety of well-known classical application areas as well as an outlook to modern computational methods in promising new areas. Therefore, this book may equally serve as a textbook in graduate courses for students, as a reference book for people interested in engineering or social sciences, and as a collection of new and promising avenues for researchers working in this field.
Handbook of Metaheuristics
Author: Michel Gendreau
Publisher: Springer
ISBN: 9783030081737
Category :
Languages : en
Pages : 626
Book Description
Metaheuristics have grown into one of the most prominent areas of operations research. This update of a trailblazing volume examines the latest developments in the field.
Publisher: Springer
ISBN: 9783030081737
Category :
Languages : en
Pages : 626
Book Description
Metaheuristics have grown into one of the most prominent areas of operations research. This update of a trailblazing volume examines the latest developments in the field.
Metaheuristic Approaches to Portfolio Optimization
Author: Ray, Jhuma
Publisher: IGI Global
ISBN: 1522581049
Category : Business & Economics
Languages : en
Pages : 281
Book Description
Control of an impartial balance between risks and returns has become important for investors, and having a combination of financial instruments within a portfolio is an advantage. Portfolio management has thus become very important for reaching a resolution in high-risk investment opportunities and addressing the risk-reward tradeoff by maximizing returns and minimizing risks within a given investment period for a variety of assets. Metaheuristic Approaches to Portfolio Optimization is an essential reference source that examines the proper selection of financial instruments in a financial portfolio management scenario in terms of metaheuristic approaches. It also explores common measures used for the evaluation of risks/returns of portfolios in real-life situations. Featuring research on topics such as closed-end funds, asset allocation, and risk-return paradigm, this book is ideally designed for investors, financial professionals, money managers, accountants, students, professionals, and researchers.
Publisher: IGI Global
ISBN: 1522581049
Category : Business & Economics
Languages : en
Pages : 281
Book Description
Control of an impartial balance between risks and returns has become important for investors, and having a combination of financial instruments within a portfolio is an advantage. Portfolio management has thus become very important for reaching a resolution in high-risk investment opportunities and addressing the risk-reward tradeoff by maximizing returns and minimizing risks within a given investment period for a variety of assets. Metaheuristic Approaches to Portfolio Optimization is an essential reference source that examines the proper selection of financial instruments in a financial portfolio management scenario in terms of metaheuristic approaches. It also explores common measures used for the evaluation of risks/returns of portfolios in real-life situations. Featuring research on topics such as closed-end funds, asset allocation, and risk-return paradigm, this book is ideally designed for investors, financial professionals, money managers, accountants, students, professionals, and researchers.
Encyclopedia of Data Science and Machine Learning
Author: Wang, John
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296
Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.
Publisher: IGI Global
ISBN: 1799892212
Category : Computers
Languages : en
Pages : 3296
Book Description
Big data and machine learning are driving the Fourth Industrial Revolution. With the age of big data upon us, we risk drowning in a flood of digital data. Big data has now become a critical part of both the business world and daily life, as the synthesis and synergy of machine learning and big data has enormous potential. Big data and machine learning are projected to not only maximize citizen wealth, but also promote societal health. As big data continues to evolve and the demand for professionals in the field increases, access to the most current information about the concepts, issues, trends, and technologies in this interdisciplinary area is needed. The Encyclopedia of Data Science and Machine Learning examines current, state-of-the-art research in the areas of data science, machine learning, data mining, and more. It provides an international forum for experts within these fields to advance the knowledge and practice in all facets of big data and machine learning, emphasizing emerging theories, principals, models, processes, and applications to inspire and circulate innovative findings into research, business, and communities. Covering topics such as benefit management, recommendation system analysis, and global software development, this expansive reference provides a dynamic resource for data scientists, data analysts, computer scientists, technical managers, corporate executives, students and educators of higher education, government officials, researchers, and academicians.