Author: Stefan Jurga
Publisher: Springer Nature
ISBN: 3031084152
Category : Medical
Languages : en
Pages : 451
Book Description
This book focuses on the fundamentals and applications of messenger RNA (mRNA)-based therapeutics and discusses the strengths and key challenges of this emerging class of drugs. In the past 30 years, extensive research and technological development in many areas have contributed to the emergence of in vitro transcribed mRNA as a therapeutic that has now reached clinical testing. Formulations that protect the mRNA from nucleases and accelerate its cellular uptake, combined with improvements to the mRNA molecules themselves, have been critical advancements for mRNAs to become viable therapeutics. Though once regarded as a serious impediment, the transient nature of mRNA technology is now considered a major advantage in making mRNA therapies safe and, ultimately, a potential game changer in the field of medicine. This new book in the RNA Technologies series provides a state-of-the-art overview on the emerging field of mRNA therapeutics covering essential strategies for formulation, delivery, and application. It also reviews the promising role in cancer immunotherapy, respiratory diseases, and chronic HBV infection and discusses RNA vaccines in light of the current COVID-19 pandemic. mRNA-based approaches have great potential to revolutionize molecular biology, cell biology, biomedical research, and medicine. Thus, this handbook is an essential resource for researchers in academia and industry contributing to the development of this new area of therapeutics.
Messenger RNA Therapeutics
Author: Stefan Jurga
Publisher: Springer Nature
ISBN: 3031084152
Category : Medical
Languages : en
Pages : 451
Book Description
This book focuses on the fundamentals and applications of messenger RNA (mRNA)-based therapeutics and discusses the strengths and key challenges of this emerging class of drugs. In the past 30 years, extensive research and technological development in many areas have contributed to the emergence of in vitro transcribed mRNA as a therapeutic that has now reached clinical testing. Formulations that protect the mRNA from nucleases and accelerate its cellular uptake, combined with improvements to the mRNA molecules themselves, have been critical advancements for mRNAs to become viable therapeutics. Though once regarded as a serious impediment, the transient nature of mRNA technology is now considered a major advantage in making mRNA therapies safe and, ultimately, a potential game changer in the field of medicine. This new book in the RNA Technologies series provides a state-of-the-art overview on the emerging field of mRNA therapeutics covering essential strategies for formulation, delivery, and application. It also reviews the promising role in cancer immunotherapy, respiratory diseases, and chronic HBV infection and discusses RNA vaccines in light of the current COVID-19 pandemic. mRNA-based approaches have great potential to revolutionize molecular biology, cell biology, biomedical research, and medicine. Thus, this handbook is an essential resource for researchers in academia and industry contributing to the development of this new area of therapeutics.
Publisher: Springer Nature
ISBN: 3031084152
Category : Medical
Languages : en
Pages : 451
Book Description
This book focuses on the fundamentals and applications of messenger RNA (mRNA)-based therapeutics and discusses the strengths and key challenges of this emerging class of drugs. In the past 30 years, extensive research and technological development in many areas have contributed to the emergence of in vitro transcribed mRNA as a therapeutic that has now reached clinical testing. Formulations that protect the mRNA from nucleases and accelerate its cellular uptake, combined with improvements to the mRNA molecules themselves, have been critical advancements for mRNAs to become viable therapeutics. Though once regarded as a serious impediment, the transient nature of mRNA technology is now considered a major advantage in making mRNA therapies safe and, ultimately, a potential game changer in the field of medicine. This new book in the RNA Technologies series provides a state-of-the-art overview on the emerging field of mRNA therapeutics covering essential strategies for formulation, delivery, and application. It also reviews the promising role in cancer immunotherapy, respiratory diseases, and chronic HBV infection and discusses RNA vaccines in light of the current COVID-19 pandemic. mRNA-based approaches have great potential to revolutionize molecular biology, cell biology, biomedical research, and medicine. Thus, this handbook is an essential resource for researchers in academia and industry contributing to the development of this new area of therapeutics.
MRNA-Based Therapeutics
Author: Fernando Aranda Vega
Publisher: Elsevier
ISBN: 0323994016
Category : Science
Languages : en
Pages : 326
Book Description
MRNA-Based Therapeutics, Volume 372 in the International Review of Cell and Molecular Biology series, covers topics surrounding the effect of different metabolic situations, their contribution to metabolic modulation, and their impact on tumor growth. Specific chapters in this release include New era of nucleic acid therapies: Clinical applications and perspectives, Messenger RNA as personalized therapy: time of truth for rare metabolic disease, Applications of Self-Replicating RNA, mRNA therapy in PKU, Advances in gene-editing technologies, mRNA delivery technologies: towards clinical translation, Advances in mRNA vaccines, and more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in International Review of Cell and Molecular Biology serials Updated release includes the latest information on MRNA-Based Therapeutics
Publisher: Elsevier
ISBN: 0323994016
Category : Science
Languages : en
Pages : 326
Book Description
MRNA-Based Therapeutics, Volume 372 in the International Review of Cell and Molecular Biology series, covers topics surrounding the effect of different metabolic situations, their contribution to metabolic modulation, and their impact on tumor growth. Specific chapters in this release include New era of nucleic acid therapies: Clinical applications and perspectives, Messenger RNA as personalized therapy: time of truth for rare metabolic disease, Applications of Self-Replicating RNA, mRNA therapy in PKU, Advances in gene-editing technologies, mRNA delivery technologies: towards clinical translation, Advances in mRNA vaccines, and more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in International Review of Cell and Molecular Biology serials Updated release includes the latest information on MRNA-Based Therapeutics
Synthetic mRNA
Author: Robert E. Rhoads
Publisher: Humana
ISBN: 9781493936236
Category : Medical
Languages : en
Pages : 0
Book Description
This volume presents detailed laboratory protocols for in vitro synthesis of mRNA with favorable properties, its introduction into cells by a variety of techniques, and the measurement of physiological and clinical consequences such as protein replacement and cancer immunotherapy. Synthetic techniques are described for structural features in mRNA that provide investigational tools such as fluorescence emission, click chemistry, photo-chemical crosslinking, and that produce mRNA with increased stability in the cell, increased translational efficiency, and reduced activation of the innate immune response. Protocols are described for clinical applications such as large-scale transfection of dendritic cells, production of GMP-grade mRNA, redirecting T cell specificity, and use of molecular adjuvants for RNA vaccines. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences is a valuable and cutting-edge resource for both laboratory investigators and clinicians interested in this powerful and rapidly evolving technology.
Publisher: Humana
ISBN: 9781493936236
Category : Medical
Languages : en
Pages : 0
Book Description
This volume presents detailed laboratory protocols for in vitro synthesis of mRNA with favorable properties, its introduction into cells by a variety of techniques, and the measurement of physiological and clinical consequences such as protein replacement and cancer immunotherapy. Synthetic techniques are described for structural features in mRNA that provide investigational tools such as fluorescence emission, click chemistry, photo-chemical crosslinking, and that produce mRNA with increased stability in the cell, increased translational efficiency, and reduced activation of the innate immune response. Protocols are described for clinical applications such as large-scale transfection of dendritic cells, production of GMP-grade mRNA, redirecting T cell specificity, and use of molecular adjuvants for RNA vaccines. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences is a valuable and cutting-edge resource for both laboratory investigators and clinicians interested in this powerful and rapidly evolving technology.
RNA Therapeutics
Author: Mouldy Sioud
Publisher: Humana Press
ISBN: 9781607616641
Category : Science
Languages : en
Pages : 527
Book Description
Central to the synthesis of proteins, the performance of catalysis, and many other physiological processes, the aberrant expression of which can be linked to human diseases including cancers, RNA has proven to be key target for therapeutics as well as a tool for therapy. In RNA Therapeutics: Function, Design, and Delivery, expert contributors from a broad spectrum of scientific backgrounds highlight the roles that messenger RNAs and small RNAs can play in biology and medicine. While covering the five major RNA-based drugs, namely the use of ribozymes to cleave and/or correct mRNA transcript, the use of siRNA for targeted silencing of gene transcripts, the use of aptamers, like short RNA molecules, for neutralizing the protein functions, the use mRNA-transfected DCs to activate immune system against tumor cells, as well as the use of RNA to reprogram T and/or DC cell function, this extensive volume brings together the fields of coding (mRNA) and non-coding RNA such as ribozymes, RNAse P, siRNAs, and miRNAs into one convenient source. Written in the highly successful Methods in Molecular BiologyTM series format, the cutting-edge protocol chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and practical tips on troubleshooting and avoiding known pitfalls. Also, the book contains several excellent reviews for teaching purposes. Authoritative and comprehensive, RNA Therapeutics: Function, Design, and Delivery provides key models and tools which will assist researchers in increasing our understanding of RNA functions, modifications, and their involvement in diseases in order to lead to the design of vital new RNA-based therapeutics.
Publisher: Humana Press
ISBN: 9781607616641
Category : Science
Languages : en
Pages : 527
Book Description
Central to the synthesis of proteins, the performance of catalysis, and many other physiological processes, the aberrant expression of which can be linked to human diseases including cancers, RNA has proven to be key target for therapeutics as well as a tool for therapy. In RNA Therapeutics: Function, Design, and Delivery, expert contributors from a broad spectrum of scientific backgrounds highlight the roles that messenger RNAs and small RNAs can play in biology and medicine. While covering the five major RNA-based drugs, namely the use of ribozymes to cleave and/or correct mRNA transcript, the use of siRNA for targeted silencing of gene transcripts, the use of aptamers, like short RNA molecules, for neutralizing the protein functions, the use mRNA-transfected DCs to activate immune system against tumor cells, as well as the use of RNA to reprogram T and/or DC cell function, this extensive volume brings together the fields of coding (mRNA) and non-coding RNA such as ribozymes, RNAse P, siRNAs, and miRNAs into one convenient source. Written in the highly successful Methods in Molecular BiologyTM series format, the cutting-edge protocol chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and practical tips on troubleshooting and avoiding known pitfalls. Also, the book contains several excellent reviews for teaching purposes. Authoritative and comprehensive, RNA Therapeutics: Function, Design, and Delivery provides key models and tools which will assist researchers in increasing our understanding of RNA functions, modifications, and their involvement in diseases in order to lead to the design of vital new RNA-based therapeutics.
Epitranscriptomics
Author: Stefan Jurga
Publisher: Springer Nature
ISBN: 3030716120
Category : Science
Languages : en
Pages : 632
Book Description
This book reviews a novel and exciting field of cellular and molecular biology called epitranscriptomics, which focuses on changes in an organism’s cells resulting from the posttranscriptional modification of cellular RNA. RNA-binding proteins (RBPs) play a crucial role in these posttranscriptional modifications and also support several cellular processes necessary for maintaining RNA homeostasis. Exploring the mechanisms underlying RNA modifications and RBP function is an emerging area of biomedical research, taking the study of gene regulation a step beyond epigenetics. This book reveals that the RNA molecule is not just an information-carrying molecule with some secondary structures. Accordingly, how RNA is modified, regulated, packaged, and controlled is an important aspect. Leading experts address questions such as where the over 170 distinct posttranscriptional RNA modifications are located on the genome, what percentage of mRNAs and noncoding RNAs these modifications include, and how an RNA modification impacts a person’s biology. In closing, the book reviews the role of RNA modifications and RBPs in a variety of diseases and their pathogenesis. Addressing some of the most exciting challenges in epitranscriptomics, this book provides a valuable and engaging resource for researchers in academia and industry studying the phenomena of RNA modification.
Publisher: Springer Nature
ISBN: 3030716120
Category : Science
Languages : en
Pages : 632
Book Description
This book reviews a novel and exciting field of cellular and molecular biology called epitranscriptomics, which focuses on changes in an organism’s cells resulting from the posttranscriptional modification of cellular RNA. RNA-binding proteins (RBPs) play a crucial role in these posttranscriptional modifications and also support several cellular processes necessary for maintaining RNA homeostasis. Exploring the mechanisms underlying RNA modifications and RBP function is an emerging area of biomedical research, taking the study of gene regulation a step beyond epigenetics. This book reveals that the RNA molecule is not just an information-carrying molecule with some secondary structures. Accordingly, how RNA is modified, regulated, packaged, and controlled is an important aspect. Leading experts address questions such as where the over 170 distinct posttranscriptional RNA modifications are located on the genome, what percentage of mRNAs and noncoding RNAs these modifications include, and how an RNA modification impacts a person’s biology. In closing, the book reviews the role of RNA modifications and RBPs in a variety of diseases and their pathogenesis. Addressing some of the most exciting challenges in epitranscriptomics, this book provides a valuable and engaging resource for researchers in academia and industry studying the phenomena of RNA modification.
RNA Nanotechnology and Therapeutics
Author: Peixuan Guo
Publisher: CRC Press
ISBN: 1466505664
Category : Medical
Languages : en
Pages : 614
Book Description
Interest in RNA nanotechnology has increased in recent years as recognition of its potential for applications in nanomedicine has grown. Edited by the world's foremost experts in nanomedicine, this comprehensive, state-of-the-art reference details the latest research developments and challenges in the biophysical and single molecule approaches in RNA nanotechnology. In addition, the text also provides in-depth discussions of RNA structure for nanoparticle construction, RNA computation and modeling, single molecule imaging of RNA, RNA nanoparticle assembly, RNA nanoparticles in therapeutics, RNA chemistry for nanoparticle synthesis, and conjugation and labeling.
Publisher: CRC Press
ISBN: 1466505664
Category : Medical
Languages : en
Pages : 614
Book Description
Interest in RNA nanotechnology has increased in recent years as recognition of its potential for applications in nanomedicine has grown. Edited by the world's foremost experts in nanomedicine, this comprehensive, state-of-the-art reference details the latest research developments and challenges in the biophysical and single molecule approaches in RNA nanotechnology. In addition, the text also provides in-depth discussions of RNA structure for nanoparticle construction, RNA computation and modeling, single molecule imaging of RNA, RNA nanoparticle assembly, RNA nanoparticles in therapeutics, RNA chemistry for nanoparticle synthesis, and conjugation and labeling.
Cardiac Regeneration
Author: Masaki Ieda
Publisher: Springer
ISBN: 3319561065
Category : Medical
Languages : en
Pages : 277
Book Description
This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.
Publisher: Springer
ISBN: 3319561065
Category : Medical
Languages : en
Pages : 277
Book Description
This Volume of the series Cardiac and Vascular Biology offers a comprehensive and exciting, state-of-the-art work on the current options and potentials of cardiac regeneration and repair. Several techniques and approaches have been developed for heart failure repair: direct injection of cells, programming of scar tissue into functional myocardium, and tissue-engineered heart muscle support. The book introduces the rationale for these different approaches in cell-based heart regeneration and discusses the most important considerations for clinical translation. Expert authors discuss when, why, and how heart muscle can be salvaged. The book represents a valuable resource for stem cell researchers, cardiologists, bioengineers, and biomedical scientists studying cardiac function and regeneration.
RNA Therapeutics Part A
Author:
Publisher: Elsevier
ISBN: 0443223157
Category : Science
Languages : en
Pages : 328
Book Description
RNA Therapeutics, Part A, Volume 203 presents the latest on a new class of medication based on RNA molecules. The book includes timely chapters that focus on An introduction to RNA therapeutics and potentials, The development and technologies of RNA therapeutics, Types of RNA therapeutics, Molecular mechanisms of RNA therapeutics, IT, and AI applications in RNA therapeutics, The application of data sciences and bioinformatics in RNA therapeutics, RNA therapeutics history and future perspectives, Recent applications of RNA therapeutic in clinics, Advantages and disadvantages of RNA therapeutics, RNA therapeutics for neurological disease, RNA therapeutics for metabolic disorders, and RNA therapeutics for metabolic disorders. - Discusses the history of RNA therapeutics, along with future perspectives - Presents the processes of RNA therapeutical developments - Covers recent applications of RNA therapeutics in clinics - Provides the advantages and disadvantages of RNA therapeutics
Publisher: Elsevier
ISBN: 0443223157
Category : Science
Languages : en
Pages : 328
Book Description
RNA Therapeutics, Part A, Volume 203 presents the latest on a new class of medication based on RNA molecules. The book includes timely chapters that focus on An introduction to RNA therapeutics and potentials, The development and technologies of RNA therapeutics, Types of RNA therapeutics, Molecular mechanisms of RNA therapeutics, IT, and AI applications in RNA therapeutics, The application of data sciences and bioinformatics in RNA therapeutics, RNA therapeutics history and future perspectives, Recent applications of RNA therapeutic in clinics, Advantages and disadvantages of RNA therapeutics, RNA therapeutics for neurological disease, RNA therapeutics for metabolic disorders, and RNA therapeutics for metabolic disorders. - Discusses the history of RNA therapeutics, along with future perspectives - Presents the processes of RNA therapeutical developments - Covers recent applications of RNA therapeutics in clinics - Provides the advantages and disadvantages of RNA therapeutics
Delivery Technologies for Biopharmaceuticals
Author: Lene Jorgensen
Publisher: John Wiley & Sons
ISBN: 0470688408
Category : Science
Languages : en
Pages : 442
Book Description
Advances in biotechnology have provided scientists with an increasing number of biopharmaceuticals such as novel peptide and protein drugs as well as nucleic acid based drugs for gene therapy. However, successful delivery of these biopharmaceuticals is a major challenge because their molecular properties lead to poor physical and chemical stability in the body and limited membrane permeability. Therefore researchers are developing a range of new delivery technologies and materials to enable these new drugs to be delivered intact to their target sites. Delivery Technologies for Biopharmaceuticals describes strategies to overcome the main barriers for successful delivery of therapeutic peptides, proteins, and nucleic acid-based drugs or vaccines related to the site of administration and the target site. Many of the approaches described are reported in formulations in current clinical trials as well as in marketed products. Contents include: challenges in delivery of biopharmaceuticals novel formulation approaches for peptide and protein injectables non-viral chemical vectors and viral technology for delivery of nucleic acid based drugs immune response, adjuvants and delivery systems for vaccines several examples of delivery systems for different biopharmaceuticals a critical assessment of delivery technologies for biopharmaceuticals Delivery Technologies for Biopharmaceuticals is an essential single-volume introduction to the technologies used by researchers to ensure efficient delivery of this exciting new class of drugs. It will be of value to researchers and students working in drug delivery, formulation, biopharmaceuticals, medicinal chemistry, and new materials development.
Publisher: John Wiley & Sons
ISBN: 0470688408
Category : Science
Languages : en
Pages : 442
Book Description
Advances in biotechnology have provided scientists with an increasing number of biopharmaceuticals such as novel peptide and protein drugs as well as nucleic acid based drugs for gene therapy. However, successful delivery of these biopharmaceuticals is a major challenge because their molecular properties lead to poor physical and chemical stability in the body and limited membrane permeability. Therefore researchers are developing a range of new delivery technologies and materials to enable these new drugs to be delivered intact to their target sites. Delivery Technologies for Biopharmaceuticals describes strategies to overcome the main barriers for successful delivery of therapeutic peptides, proteins, and nucleic acid-based drugs or vaccines related to the site of administration and the target site. Many of the approaches described are reported in formulations in current clinical trials as well as in marketed products. Contents include: challenges in delivery of biopharmaceuticals novel formulation approaches for peptide and protein injectables non-viral chemical vectors and viral technology for delivery of nucleic acid based drugs immune response, adjuvants and delivery systems for vaccines several examples of delivery systems for different biopharmaceuticals a critical assessment of delivery technologies for biopharmaceuticals Delivery Technologies for Biopharmaceuticals is an essential single-volume introduction to the technologies used by researchers to ensure efficient delivery of this exciting new class of drugs. It will be of value to researchers and students working in drug delivery, formulation, biopharmaceuticals, medicinal chemistry, and new materials development.
Organelle and Molecular Targeting
Author: Lara Scheherazade Milane
Publisher: CRC Press
ISBN: 1000505936
Category : Science
Languages : en
Pages : 511
Book Description
We have surpassed the omics era and are truly in the Age of Molecular Therapeutics. The fast-paced development of SARS-CoV-2 vaccines, such as the mRNA vaccines encoding the viral spike protein, demonstrated the need for and capability of molecular therapy and nanotechnology-based solutions for drug delivery. In record speed, the SARS-CoV-2 viral RNA genome was sequenced and shared with the scientific community, allowing the rapid design of molecular therapeutics. The mRNA vaccines exploit the host cell endoplasmic reticulum to produce viral spike proteins for antigen presentation and recognition by the innate and adaptive immune system. Lipid nanoparticles enable the delivery of the fragile, degradation-sensitive nucleic acid payloads. Molecular-based therapeutics and nanotechnology solutions continue to drive the scientific and medical response to the COVID-19 pandemic as new mRNA, DNA, and protein-based vaccines are developed and approved and the emergency use approved vaccines are rapidly manufactured and distributed throughout the globe. The need for molecular therapies and drug delivery solutions is clear, and as these therapies progress and become more specialized there will be important advancements in organelle targeting. For example, using organelle targeting to direct lipid nanoparticles with mRNA payloads to the endoplasmic reticulum would increase the efficacy of mRNA vaccines, reducing the required dose and therefore the biomanufacturing demand. Likewise, improving the delivery of DNA therapeutics to the nucleus would improve efficacy. Organelles and molecules have always been drug targets, but until recently we have not had the tools or capability to design and develop such highly specific therapeutics. Organelle targeting has far-reaching implications. For example, mitochondria are central to both energy production and intrinsic apoptosis. Effectively targeting and manipulating mitochondria has therapeutic applications for diseases such as myopathies, cancer, neurodegeneration, progerias, diabetes, and the natural aging process. The SARS-CoV-2 vaccines that exploit the endoplasmic reticulum (for mRNA vaccines) and the nucleic translational process (DNA vaccines) attest to the need for organelle and molecular therapeutics. This book covers the status, demand, and future of organelle- and molecularly targeted therapeutics that are critical to the advancement of modern medicine. Organelle and molecular targeting is the drug design and drug delivery approach of today and the future; understanding this approach is essential for students, scientists, and clinicians contributing to modern medicine.
Publisher: CRC Press
ISBN: 1000505936
Category : Science
Languages : en
Pages : 511
Book Description
We have surpassed the omics era and are truly in the Age of Molecular Therapeutics. The fast-paced development of SARS-CoV-2 vaccines, such as the mRNA vaccines encoding the viral spike protein, demonstrated the need for and capability of molecular therapy and nanotechnology-based solutions for drug delivery. In record speed, the SARS-CoV-2 viral RNA genome was sequenced and shared with the scientific community, allowing the rapid design of molecular therapeutics. The mRNA vaccines exploit the host cell endoplasmic reticulum to produce viral spike proteins for antigen presentation and recognition by the innate and adaptive immune system. Lipid nanoparticles enable the delivery of the fragile, degradation-sensitive nucleic acid payloads. Molecular-based therapeutics and nanotechnology solutions continue to drive the scientific and medical response to the COVID-19 pandemic as new mRNA, DNA, and protein-based vaccines are developed and approved and the emergency use approved vaccines are rapidly manufactured and distributed throughout the globe. The need for molecular therapies and drug delivery solutions is clear, and as these therapies progress and become more specialized there will be important advancements in organelle targeting. For example, using organelle targeting to direct lipid nanoparticles with mRNA payloads to the endoplasmic reticulum would increase the efficacy of mRNA vaccines, reducing the required dose and therefore the biomanufacturing demand. Likewise, improving the delivery of DNA therapeutics to the nucleus would improve efficacy. Organelles and molecules have always been drug targets, but until recently we have not had the tools or capability to design and develop such highly specific therapeutics. Organelle targeting has far-reaching implications. For example, mitochondria are central to both energy production and intrinsic apoptosis. Effectively targeting and manipulating mitochondria has therapeutic applications for diseases such as myopathies, cancer, neurodegeneration, progerias, diabetes, and the natural aging process. The SARS-CoV-2 vaccines that exploit the endoplasmic reticulum (for mRNA vaccines) and the nucleic translational process (DNA vaccines) attest to the need for organelle and molecular therapeutics. This book covers the status, demand, and future of organelle- and molecularly targeted therapeutics that are critical to the advancement of modern medicine. Organelle and molecular targeting is the drug design and drug delivery approach of today and the future; understanding this approach is essential for students, scientists, and clinicians contributing to modern medicine.