Author: Mikhail A. Anisimov
Publisher: John Wiley & Sons
ISBN: 139424195X
Category : Science
Languages : en
Pages : 340
Book Description
Provides comprehensive coverage of the fundamentals of mesoscopic thermodynamics Mesoscopic Thermodynamics for Scientists and Engineers presents a unified conceptual approach to the core principles of equilibrium and nonequilibrium thermodynamics. Emphasizing the concept of universality at the mesoscale, this authoritative textbook provides the knowledge required for understanding and utilizing mesoscopic phenomena in a wide range of new and emerging technologies. Divided into two parts, Mesoscopic Thermodynamics for Scientists and Engineers opens with a concise summary of classical thermodynamics and nonequilibrium thermodynamics, followed by a detailed description of fluctuations and local (spatially-dependent) properties. Part II presents a universal approach to specific meso-heterogeneous systems, illustrated by numerous examples from experimental and computational studies that align with contemporary research and engineering practice. Bridges the gap between conventional courses in thermodynamics and real-world practice Provides in-depth instruction on applying thermodynamics to current problems involving meso- and nano-heterogeneous systems Contains a wealth of examples of simple and complex fluids, polymers, liquid crystals, and supramolecular equilibrium and dissipative structures Includes practical exercises and references to textbooks, monographs, and journal articles in each chapter Mesoscopic Thermodynamics for Scientists and Engineers is an excellent textbook for advanced undergraduate and graduate students in physics, chemistry, and chemical, mechanical, and materials science engineering, as well as an invaluable reference for engineers and researchers engaged in soft-condensed matter physics and chemistry, nanoscience and nanotechnology, and mechanical, chemical, and biomolecular engineering.
Mesoscopic Thermodynamics for Scientists and Engineers
Author: Mikhail A. Anisimov
Publisher: John Wiley & Sons
ISBN: 139424195X
Category : Science
Languages : en
Pages : 340
Book Description
Provides comprehensive coverage of the fundamentals of mesoscopic thermodynamics Mesoscopic Thermodynamics for Scientists and Engineers presents a unified conceptual approach to the core principles of equilibrium and nonequilibrium thermodynamics. Emphasizing the concept of universality at the mesoscale, this authoritative textbook provides the knowledge required for understanding and utilizing mesoscopic phenomena in a wide range of new and emerging technologies. Divided into two parts, Mesoscopic Thermodynamics for Scientists and Engineers opens with a concise summary of classical thermodynamics and nonequilibrium thermodynamics, followed by a detailed description of fluctuations and local (spatially-dependent) properties. Part II presents a universal approach to specific meso-heterogeneous systems, illustrated by numerous examples from experimental and computational studies that align with contemporary research and engineering practice. Bridges the gap between conventional courses in thermodynamics and real-world practice Provides in-depth instruction on applying thermodynamics to current problems involving meso- and nano-heterogeneous systems Contains a wealth of examples of simple and complex fluids, polymers, liquid crystals, and supramolecular equilibrium and dissipative structures Includes practical exercises and references to textbooks, monographs, and journal articles in each chapter Mesoscopic Thermodynamics for Scientists and Engineers is an excellent textbook for advanced undergraduate and graduate students in physics, chemistry, and chemical, mechanical, and materials science engineering, as well as an invaluable reference for engineers and researchers engaged in soft-condensed matter physics and chemistry, nanoscience and nanotechnology, and mechanical, chemical, and biomolecular engineering.
Publisher: John Wiley & Sons
ISBN: 139424195X
Category : Science
Languages : en
Pages : 340
Book Description
Provides comprehensive coverage of the fundamentals of mesoscopic thermodynamics Mesoscopic Thermodynamics for Scientists and Engineers presents a unified conceptual approach to the core principles of equilibrium and nonequilibrium thermodynamics. Emphasizing the concept of universality at the mesoscale, this authoritative textbook provides the knowledge required for understanding and utilizing mesoscopic phenomena in a wide range of new and emerging technologies. Divided into two parts, Mesoscopic Thermodynamics for Scientists and Engineers opens with a concise summary of classical thermodynamics and nonequilibrium thermodynamics, followed by a detailed description of fluctuations and local (spatially-dependent) properties. Part II presents a universal approach to specific meso-heterogeneous systems, illustrated by numerous examples from experimental and computational studies that align with contemporary research and engineering practice. Bridges the gap between conventional courses in thermodynamics and real-world practice Provides in-depth instruction on applying thermodynamics to current problems involving meso- and nano-heterogeneous systems Contains a wealth of examples of simple and complex fluids, polymers, liquid crystals, and supramolecular equilibrium and dissipative structures Includes practical exercises and references to textbooks, monographs, and journal articles in each chapter Mesoscopic Thermodynamics for Scientists and Engineers is an excellent textbook for advanced undergraduate and graduate students in physics, chemistry, and chemical, mechanical, and materials science engineering, as well as an invaluable reference for engineers and researchers engaged in soft-condensed matter physics and chemistry, nanoscience and nanotechnology, and mechanical, chemical, and biomolecular engineering.
Mesoscopic Thermodynamics for Scientists and Engineers
Author: Mikhail A. Anisimov
Publisher: John Wiley & Sons
ISBN: 1394241968
Category : Science
Languages : en
Pages : 340
Book Description
Provides comprehensive coverage of the fundamentals of mesoscopic thermodynamics Mesoscopic Thermodynamics for Scientists and Engineers presents a unified conceptual approach to the core principles of equilibrium and nonequilibrium thermodynamics. Emphasizing the concept of universality at the mesoscale, this authoritative textbook provides the knowledge required for understanding and utilizing mesoscopic phenomena in a wide range of new and emerging technologies. Divided into two parts, Mesoscopic Thermodynamics for Scientists and Engineers opens with a concise summary of classical thermodynamics and nonequilibrium thermodynamics, followed by a detailed description of fluctuations and local (spatially-dependent) properties. Part II presents a universal approach to specific meso-heterogeneous systems, illustrated by numerous examples from experimental and computational studies that align with contemporary research and engineering practice. Bridges the gap between conventional courses in thermodynamics and real-world practice Provides in-depth instruction on applying thermodynamics to current problems involving meso- and nano-heterogeneous systems Contains a wealth of examples of simple and complex fluids, polymers, liquid crystals, and supramolecular equilibrium and dissipative structures Includes practical exercises and references to textbooks, monographs, and journal articles in each chapter Mesoscopic Thermodynamics for Scientists and Engineers is an excellent textbook for advanced undergraduate and graduate students in physics, chemistry, and chemical, mechanical, and materials science engineering, as well as an invaluable reference for engineers and researchers engaged in soft-condensed matter physics and chemistry, nanoscience and nanotechnology, and mechanical, chemical, and biomolecular engineering.
Publisher: John Wiley & Sons
ISBN: 1394241968
Category : Science
Languages : en
Pages : 340
Book Description
Provides comprehensive coverage of the fundamentals of mesoscopic thermodynamics Mesoscopic Thermodynamics for Scientists and Engineers presents a unified conceptual approach to the core principles of equilibrium and nonequilibrium thermodynamics. Emphasizing the concept of universality at the mesoscale, this authoritative textbook provides the knowledge required for understanding and utilizing mesoscopic phenomena in a wide range of new and emerging technologies. Divided into two parts, Mesoscopic Thermodynamics for Scientists and Engineers opens with a concise summary of classical thermodynamics and nonequilibrium thermodynamics, followed by a detailed description of fluctuations and local (spatially-dependent) properties. Part II presents a universal approach to specific meso-heterogeneous systems, illustrated by numerous examples from experimental and computational studies that align with contemporary research and engineering practice. Bridges the gap between conventional courses in thermodynamics and real-world practice Provides in-depth instruction on applying thermodynamics to current problems involving meso- and nano-heterogeneous systems Contains a wealth of examples of simple and complex fluids, polymers, liquid crystals, and supramolecular equilibrium and dissipative structures Includes practical exercises and references to textbooks, monographs, and journal articles in each chapter Mesoscopic Thermodynamics for Scientists and Engineers is an excellent textbook for advanced undergraduate and graduate students in physics, chemistry, and chemical, mechanical, and materials science engineering, as well as an invaluable reference for engineers and researchers engaged in soft-condensed matter physics and chemistry, nanoscience and nanotechnology, and mechanical, chemical, and biomolecular engineering.
Thermal Energy
Author: Yatish T. Shah
Publisher: CRC Press
ISBN: 1315305933
Category : Technology & Engineering
Languages : en
Pages : 1112
Book Description
The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.
Publisher: CRC Press
ISBN: 1315305933
Category : Technology & Engineering
Languages : en
Pages : 1112
Book Description
The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.
Stochastic Thermodynamics: An Introduction
Author: Luca Peliti
Publisher: Princeton University Press
ISBN: 0691215529
Category : Science
Languages : en
Pages : 272
Book Description
The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course
Publisher: Princeton University Press
ISBN: 0691215529
Category : Science
Languages : en
Pages : 272
Book Description
The first comprehensive graduate-level introduction to stochastic thermodynamics Stochastic thermodynamics is a well-defined subfield of statistical physics that aims to interpret thermodynamic concepts for systems ranging in size from a few to hundreds of nanometers, the behavior of which is inherently random due to thermal fluctuations. This growing field therefore describes the nonequilibrium dynamics of small systems, such as artificial nanodevices and biological molecular machines, which are of increasing scientific and technological relevance. This textbook provides an up-to-date pedagogical introduction to stochastic thermodynamics, guiding readers from basic concepts in statistical physics, probability theory, and thermodynamics to the most recent developments in the field. Gradually building up to more advanced material, the authors consistently prioritize simplicity and clarity over exhaustiveness and focus on the development of readers’ physical insight over mathematical formalism. This approach allows the reader to grow as the book proceeds, helping interested young scientists to enter the field with less effort and to contribute to its ongoing vibrant development. Chapters provide exercises to complement and reinforce learning. Appropriate for graduate students in physics and biophysics, as well as researchers, Stochastic Thermodynamics serves as an excellent initiation to this rapidly evolving field. Emphasizes a pedagogical approach to the subject Highlights connections with the thermodynamics of information Pays special attention to molecular biophysics applications Privileges physical intuition over mathematical formalism Solutions manual available on request for instructors adopting the book in a course
Applied Thermodynamics of Fluids
Author: A. R. H. Goodwin
Publisher: Royal Society of Chemistry
ISBN: 1847558062
Category : Science
Languages : en
Pages : 535
Book Description
Published under the asspices of both IUPAC and its affiliated body, the International Association of Chemical Thermodynamics (IACT), this book will serve as a guide to scientists or technicians who use equations of state for fluids. Concentrating on the application of theory, the practical use of each type of equation is discussed and the strengths and weaknesses of each are addressed. It includes material on the equations of state for chemically reacting and non-equilibrium fluids which have undergone significant developments and brings up to date the equations of state for fluids and fluid mixtures. Applied Thermodynamics of Fluids addresses the need of practitioners within academia, government and industry by assembling an international team of distinguished experts to provide each chapter. The topics presented in the book are important to the energy business, particularly the hydroncarbon economy and the development of new power sources and are also significant for the application of liquid crystals and ionic liquids to commericial products. This reference will be useful for post graduate researchers in the fields of chemical engineering, mechanical engineering, chemistry and physics.
Publisher: Royal Society of Chemistry
ISBN: 1847558062
Category : Science
Languages : en
Pages : 535
Book Description
Published under the asspices of both IUPAC and its affiliated body, the International Association of Chemical Thermodynamics (IACT), this book will serve as a guide to scientists or technicians who use equations of state for fluids. Concentrating on the application of theory, the practical use of each type of equation is discussed and the strengths and weaknesses of each are addressed. It includes material on the equations of state for chemically reacting and non-equilibrium fluids which have undergone significant developments and brings up to date the equations of state for fluids and fluid mixtures. Applied Thermodynamics of Fluids addresses the need of practitioners within academia, government and industry by assembling an international team of distinguished experts to provide each chapter. The topics presented in the book are important to the energy business, particularly the hydroncarbon economy and the development of new power sources and are also significant for the application of liquid crystals and ionic liquids to commericial products. This reference will be useful for post graduate researchers in the fields of chemical engineering, mechanical engineering, chemistry and physics.
Thermodynamics of Materials
Author: Qing Jiang
Publisher: Springer Science & Business Media
ISBN: 3642147186
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
"Thermodynamics of Materials" introduces the basic underlying principles of thermodynamics as well as their applicability to the behavior of all classes of materials, while providing an integrated approach from macro- (or classical) thermodynamics to meso- and nanothermodynamics, and microscopic (or statistical) thermodynamics. The book is intended for scientists, engineers and graduate students in all fields involving materials science-related disciplines. Both Dr. Qing Jiang and Dr. Zi Wen are professors at Jilin University.
Publisher: Springer Science & Business Media
ISBN: 3642147186
Category : Technology & Engineering
Languages : en
Pages : 312
Book Description
"Thermodynamics of Materials" introduces the basic underlying principles of thermodynamics as well as their applicability to the behavior of all classes of materials, while providing an integrated approach from macro- (or classical) thermodynamics to meso- and nanothermodynamics, and microscopic (or statistical) thermodynamics. The book is intended for scientists, engineers and graduate students in all fields involving materials science-related disciplines. Both Dr. Qing Jiang and Dr. Zi Wen are professors at Jilin University.
Thermodynamics and Statistical Mechanics
Author: Robert J. Hardy
Publisher: John Wiley & Sons
ISBN: 1118501004
Category : Science
Languages : en
Pages : 538
Book Description
Thermodynamics and Statistical Mechanics Thermodynamics and Statistical Mechanics An Integrated Approach This textbook brings together the fundamentals of the macroscopic and microscopic aspects of thermal physics by presenting thermodynamics and statistical mechanics as complementary theories based on small numbers of postulates. The book is designed to give the instructor flexibility in structuring courses for advanced undergraduates and/or beginning graduate students and is written on the principle that a good text should also be a good reference. The presentation of thermodynamics follows the logic of Clausius and Kelvin while relating the concepts involved to familiar phenomena and the modern student’s knowledge of the atomic nature of matter. Another unique aspect of the book is the treatment of the mathematics involved. The essential mathematical concepts are briefly reviewed before using them, and the similarity of the mathematics to that employed in other fields of physics is emphasized. The text gives in-depth treatments of low-density gases, harmonic solids, magnetic and dielectric materials, phase transitions, and the concept of entropy. The microcanonical, canonical, and grand canonical ensembles of statistical mechanics are derived and used as the starting point for the analysis of fluctuations, blackbody radiation, the Maxwell distribution, Fermi-Dirac statistics, Bose-Einstein condensation, and the statistical basis of computer simulations.
Publisher: John Wiley & Sons
ISBN: 1118501004
Category : Science
Languages : en
Pages : 538
Book Description
Thermodynamics and Statistical Mechanics Thermodynamics and Statistical Mechanics An Integrated Approach This textbook brings together the fundamentals of the macroscopic and microscopic aspects of thermal physics by presenting thermodynamics and statistical mechanics as complementary theories based on small numbers of postulates. The book is designed to give the instructor flexibility in structuring courses for advanced undergraduates and/or beginning graduate students and is written on the principle that a good text should also be a good reference. The presentation of thermodynamics follows the logic of Clausius and Kelvin while relating the concepts involved to familiar phenomena and the modern student’s knowledge of the atomic nature of matter. Another unique aspect of the book is the treatment of the mathematics involved. The essential mathematical concepts are briefly reviewed before using them, and the similarity of the mathematics to that employed in other fields of physics is emphasized. The text gives in-depth treatments of low-density gases, harmonic solids, magnetic and dielectric materials, phase transitions, and the concept of entropy. The microcanonical, canonical, and grand canonical ensembles of statistical mechanics are derived and used as the starting point for the analysis of fluctuations, blackbody radiation, the Maxwell distribution, Fermi-Dirac statistics, Bose-Einstein condensation, and the statistical basis of computer simulations.
Statistical Physics
Author: Ian Ford
Publisher: John Wiley & Sons
ISBN: 1118597494
Category : Science
Languages : en
Pages : 290
Book Description
This undergraduate textbook provides a statistical mechanical foundation to the classical laws of thermodynamics via a comprehensive treatment of the basics of classical thermodynamics, equilibrium statistical mechanics, irreversible thermodynamics, and the statistical mechanics of non-equilibrium phenomena. This timely book has a unique focus on the concept of entropy, which is studied starting from the well-known ideal gas law, employing various thermodynamic processes, example systems and interpretations to expose its role in the second law of thermodynamics. This modern treatment of statistical physics includes studies of neutron stars, superconductivity and the recently developed fluctuation theorems. It also presents figures and problems in a clear and concise way, aiding the student’s understanding.
Publisher: John Wiley & Sons
ISBN: 1118597494
Category : Science
Languages : en
Pages : 290
Book Description
This undergraduate textbook provides a statistical mechanical foundation to the classical laws of thermodynamics via a comprehensive treatment of the basics of classical thermodynamics, equilibrium statistical mechanics, irreversible thermodynamics, and the statistical mechanics of non-equilibrium phenomena. This timely book has a unique focus on the concept of entropy, which is studied starting from the well-known ideal gas law, employing various thermodynamic processes, example systems and interpretations to expose its role in the second law of thermodynamics. This modern treatment of statistical physics includes studies of neutron stars, superconductivity and the recently developed fluctuation theorems. It also presents figures and problems in a clear and concise way, aiding the student’s understanding.
Thermal Physics
Author: Robert Floyd Sekerka
Publisher: Elsevier
ISBN: 0128033371
Category : Science
Languages : en
Pages : 610
Book Description
In Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers, the fundamental laws of thermodynamics are stated precisely as postulates and subsequently connected to historical context and developed mathematically. These laws are applied systematically to topics such as phase equilibria, chemical reactions, external forces, fluid-fluid surfaces and interfaces, and anisotropic crystal-fluid interfaces. Statistical mechanics is presented in the context of information theory to quantify entropy, followed by development of the most important ensembles: microcanonical, canonical, and grand canonical. A unified treatment of ideal classical, Fermi, and Bose gases is presented, including Bose condensation, degenerate Fermi gases, and classical gases with internal structure. Additional topics include paramagnetism, adsorption on dilute sites, point defects in crystals, thermal aspects of intrinsic and extrinsic semiconductors, density matrix formalism, the Ising model, and an introduction to Monte Carlo simulation. Throughout the book, problems are posed and solved to illustrate specific results and problem-solving techniques. - Includes applications of interest to physicists, physical chemists, and materials scientists, as well as materials, chemical, and mechanical engineers - Suitable as a textbook for advanced undergraduates, graduate students, and practicing researchers - Develops content systematically with increasing order of complexity - Self-contained, including nine appendices to handle necessary background and technical details
Publisher: Elsevier
ISBN: 0128033371
Category : Science
Languages : en
Pages : 610
Book Description
In Thermal Physics: Thermodynamics and Statistical Mechanics for Scientists and Engineers, the fundamental laws of thermodynamics are stated precisely as postulates and subsequently connected to historical context and developed mathematically. These laws are applied systematically to topics such as phase equilibria, chemical reactions, external forces, fluid-fluid surfaces and interfaces, and anisotropic crystal-fluid interfaces. Statistical mechanics is presented in the context of information theory to quantify entropy, followed by development of the most important ensembles: microcanonical, canonical, and grand canonical. A unified treatment of ideal classical, Fermi, and Bose gases is presented, including Bose condensation, degenerate Fermi gases, and classical gases with internal structure. Additional topics include paramagnetism, adsorption on dilute sites, point defects in crystals, thermal aspects of intrinsic and extrinsic semiconductors, density matrix formalism, the Ising model, and an introduction to Monte Carlo simulation. Throughout the book, problems are posed and solved to illustrate specific results and problem-solving techniques. - Includes applications of interest to physicists, physical chemists, and materials scientists, as well as materials, chemical, and mechanical engineers - Suitable as a textbook for advanced undergraduates, graduate students, and practicing researchers - Develops content systematically with increasing order of complexity - Self-contained, including nine appendices to handle necessary background and technical details
A Conceptual Guide to Thermodynamics
Author: Bill Poirier
Publisher: John Wiley & Sons
ISBN: 1118840488
Category : Science
Languages : en
Pages : 196
Book Description
Thermodynamics is the science that describes the behavior of matter at the macroscopic scale, and how this arises from individual molecules. As such, it is a subject of profound practical and fundamental importance to many science and engineering fields. Despite extremely varied applications ranging from nanomotors to cosmology, the core concepts of thermodynamics such as equilibrium and entropy are the same across all disciplines. A Conceptual Guide to Thermodynamics serves as a concise, conceptual and practical supplement to the major thermodynamics textbooks used in various fields. Presenting clear explanations of the core concepts, the book aims to improve fundamental understanding of the material, as well as homework and exam performance. Distinctive features include: Terminology and Notation Key: A universal translator that addresses the myriad of conventions, terminologies, and notations found across the major thermodynamics texts. Content Maps: Specific references to each major thermodynamic text by section and page number for each new concept that is introduced. Helpful Hints and Don’t Try Its: Numerous useful tips for solving problems, as well as warnings of common student pitfalls. Unique Explanations: Conceptually clear, mathematically fairly simple, yet also sufficiently precise and rigorous. A more extensive set of reference materials, including older and newer editions of the major textbooks, as well as a number of less commonly used titles, is available online at http://www.conceptualthermo.com. Undergraduate and graduate students of chemistry, physics, engineering, geosciences and biological sciences will benefit from this book, as will students preparing for graduate school entrance exams and MCATs.
Publisher: John Wiley & Sons
ISBN: 1118840488
Category : Science
Languages : en
Pages : 196
Book Description
Thermodynamics is the science that describes the behavior of matter at the macroscopic scale, and how this arises from individual molecules. As such, it is a subject of profound practical and fundamental importance to many science and engineering fields. Despite extremely varied applications ranging from nanomotors to cosmology, the core concepts of thermodynamics such as equilibrium and entropy are the same across all disciplines. A Conceptual Guide to Thermodynamics serves as a concise, conceptual and practical supplement to the major thermodynamics textbooks used in various fields. Presenting clear explanations of the core concepts, the book aims to improve fundamental understanding of the material, as well as homework and exam performance. Distinctive features include: Terminology and Notation Key: A universal translator that addresses the myriad of conventions, terminologies, and notations found across the major thermodynamics texts. Content Maps: Specific references to each major thermodynamic text by section and page number for each new concept that is introduced. Helpful Hints and Don’t Try Its: Numerous useful tips for solving problems, as well as warnings of common student pitfalls. Unique Explanations: Conceptually clear, mathematically fairly simple, yet also sufficiently precise and rigorous. A more extensive set of reference materials, including older and newer editions of the major textbooks, as well as a number of less commonly used titles, is available online at http://www.conceptualthermo.com. Undergraduate and graduate students of chemistry, physics, engineering, geosciences and biological sciences will benefit from this book, as will students preparing for graduate school entrance exams and MCATs.