Author: Myron W. Evans
Publisher: John Wiley & Sons
ISBN: 0470143312
Category : Science
Languages : en
Pages : 574
Book Description
An international group of scholars presents a very important development in the theory of relaxation processes. For the first time, the basic equations of motion have been put into a form suitable for computation of a variety of observable phenomena in several different disciplines. This book begins with a description of the foundations of the memory function techniques, of the adiabatic elimination procedure and of the mathematics of continued fractions. It also covers depth relaxation phenomena in several areas of physics, chemistry, biology, electronic engineering, spectroscopy, computer simulation and astronomy.
Memory Function Approaches to Stochastic Problems in Condensed Matter, Volume 62
Author: Myron W. Evans
Publisher: John Wiley & Sons
ISBN: 0470143312
Category : Science
Languages : en
Pages : 574
Book Description
An international group of scholars presents a very important development in the theory of relaxation processes. For the first time, the basic equations of motion have been put into a form suitable for computation of a variety of observable phenomena in several different disciplines. This book begins with a description of the foundations of the memory function techniques, of the adiabatic elimination procedure and of the mathematics of continued fractions. It also covers depth relaxation phenomena in several areas of physics, chemistry, biology, electronic engineering, spectroscopy, computer simulation and astronomy.
Publisher: John Wiley & Sons
ISBN: 0470143312
Category : Science
Languages : en
Pages : 574
Book Description
An international group of scholars presents a very important development in the theory of relaxation processes. For the first time, the basic equations of motion have been put into a form suitable for computation of a variety of observable phenomena in several different disciplines. This book begins with a description of the foundations of the memory function techniques, of the adiabatic elimination procedure and of the mathematics of continued fractions. It also covers depth relaxation phenomena in several areas of physics, chemistry, biology, electronic engineering, spectroscopy, computer simulation and astronomy.
Simulation Of Nonlinear Systems In Physics - Proceedings Of The Enea Workshops On Nonlinear Dynamics - Vol 3
Author: M Pettini
Publisher: World Scientific
ISBN: 9814569720
Category :
Languages : en
Pages : 237
Book Description
This workshop in nonlinear dynamics and mathematical physics, organized by the Italian Nuclear Energy Agency (ENEA) in Bologna, is intended to give an updated overview of modern trends in the field of nonlinear dynamics with emphasis on applications to physics, quantum theory, plasma physics and fluid dynamics, optics and electrodynamics, computer simulation and neural networks.
Publisher: World Scientific
ISBN: 9814569720
Category :
Languages : en
Pages : 237
Book Description
This workshop in nonlinear dynamics and mathematical physics, organized by the Italian Nuclear Energy Agency (ENEA) in Bologna, is intended to give an updated overview of modern trends in the field of nonlinear dynamics with emphasis on applications to physics, quantum theory, plasma physics and fluid dynamics, optics and electrodynamics, computer simulation and neural networks.
Modern Techniques in Computational Chemistry: MOTECC-91
Author: E. Clementi
Publisher: Springer Science & Business Media
ISBN: 9789072199102
Category : Science
Languages : en
Pages : 1314
Book Description
Publisher: Springer Science & Business Media
ISBN: 9789072199102
Category : Science
Languages : en
Pages : 1314
Book Description
Memory Functions, Projection Operators, and the Defect Technique
Author: V. M. (Nitant) Kenkre
Publisher: Springer Nature
ISBN: 3030686671
Category : Science
Languages : en
Pages : 374
Book Description
This book provides a graduate-level introduction to three powerful and closely related techniques in condensed matter physics: memory functions, projection operators, and the defect technique. Memory functions appear in the formalism of the generalized master equations that express the time evolution of probabilities via equations non-local in time, projection operators allow the extraction of parts of quantities, such as the diagonal parts of density matrices in statistical mechanics, and the defect technique allows solution of transport equations in which the translational invariance is broken in small regions, such as when crystals are doped with impurities. These three methods combined form an immensely useful toolkit for investigations in such disparate areas of physics as excitation in molecular crystals, sensitized luminescence, charge transport, non-equilibrium statistical physics, vibrational relaxation, granular materials, NMR, and even theoretical ecology. This book explains the three techniques and their interrelated nature, along with plenty of illustrative examples. Graduate students beginning to embark on a research project in condensed matter physics will find this book to be a most fruitful source of theoretical training.
Publisher: Springer Nature
ISBN: 3030686671
Category : Science
Languages : en
Pages : 374
Book Description
This book provides a graduate-level introduction to three powerful and closely related techniques in condensed matter physics: memory functions, projection operators, and the defect technique. Memory functions appear in the formalism of the generalized master equations that express the time evolution of probabilities via equations non-local in time, projection operators allow the extraction of parts of quantities, such as the diagonal parts of density matrices in statistical mechanics, and the defect technique allows solution of transport equations in which the translational invariance is broken in small regions, such as when crystals are doped with impurities. These three methods combined form an immensely useful toolkit for investigations in such disparate areas of physics as excitation in molecular crystals, sensitized luminescence, charge transport, non-equilibrium statistical physics, vibrational relaxation, granular materials, NMR, and even theoretical ecology. This book explains the three techniques and their interrelated nature, along with plenty of illustrative examples. Graduate students beginning to embark on a research project in condensed matter physics will find this book to be a most fruitful source of theoretical training.
Theoretical Methods for Strongly Correlated Electrons
Author: David Sénéchal
Publisher: Springer Science & Business Media
ISBN: 0387217177
Category : Science
Languages : en
Pages : 370
Book Description
Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.
Publisher: Springer Science & Business Media
ISBN: 0387217177
Category : Science
Languages : en
Pages : 370
Book Description
Focusing on the purely theoretical aspects of strongly correlated electrons, this volume brings together a variety of approaches to models of the Hubbard type - i.e., problems where both localized and delocalized elements are present in low dimensions. The chapters are arranged in three parts. The first part deals with two of the most widely used numerical methods in strongly correlated electrons, the density matrix renormalization group and the quantum Monte Carlo method. The second part covers Lagrangian, Functional Integral, Renormalization Group, Conformal, and Bosonization methods that can be applied to one-dimensional or weakly coupled chains. The third part considers functional derivatives, mean-field, self-consistent methods, slave-bosons, and extensions.
Il Nuovo Cimento Della Società Italiana Di Fisica
Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 620
Book Description
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 620
Book Description
Invariant Manifolds for Physical and Chemical Kinetics
Author: Alexander N. Gorban
Publisher: Springer Science & Business Media
ISBN: 9783540226840
Category : Science
Languages : en
Pages : 524
Book Description
By bringing together various ideas and methods for extracting the slow manifolds, the authors show that it is possible to establish a more macroscopic description in nonequilibrium systems. The book treats slowness as stability. A unifying geometrical viewpoint of the thermodynamics of slow and fast motion enables the development of reduction techniques, both analytical and numerical. Examples considered in the book range from the Boltzmann kinetic equation and hydrodynamics to the Fokker-Planck equations of polymer dynamics and models of chemical kinetics describing oxidation reactions. Special chapters are devoted to model reduction in classical statistical dynamics, natural selection, and exact solutions for slow hydrodynamic manifolds. The book will be a major reference source for both theoretical and applied model reduction. Intended primarily as a postgraduate-level text in nonequilibrium kinetics and model reduction, it will also be valuable to PhD students and researchers in applied mathematics, physics and various fields of engineering.
Publisher: Springer Science & Business Media
ISBN: 9783540226840
Category : Science
Languages : en
Pages : 524
Book Description
By bringing together various ideas and methods for extracting the slow manifolds, the authors show that it is possible to establish a more macroscopic description in nonequilibrium systems. The book treats slowness as stability. A unifying geometrical viewpoint of the thermodynamics of slow and fast motion enables the development of reduction techniques, both analytical and numerical. Examples considered in the book range from the Boltzmann kinetic equation and hydrodynamics to the Fokker-Planck equations of polymer dynamics and models of chemical kinetics describing oxidation reactions. Special chapters are devoted to model reduction in classical statistical dynamics, natural selection, and exact solutions for slow hydrodynamic manifolds. The book will be a major reference source for both theoretical and applied model reduction. Intended primarily as a postgraduate-level text in nonequilibrium kinetics and model reduction, it will also be valuable to PhD students and researchers in applied mathematics, physics and various fields of engineering.
Advances in Nonlinear Dynamics and Stochastic Processes
Author: Roberto Livi
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 240
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 240
Book Description
Quantum Interference Effects in Condensed Matter Systems
Author: Yeong-Lieh Lin
Publisher:
ISBN:
Category :
Languages : en
Pages : 220
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 220
Book Description
The Enigmatic Photon
Author: M.W. Evans
Publisher: Springer
ISBN: 9780792348269
Category : Science
Languages : en
Pages : 480
Book Description
This volume establishes the fact that electrodynamics is by no means a completely understood theory by bringing together several in-depth review papers from leading specialists. The major portion of the volume is built around the nonlinear structure which leads to the B(3) field introduced in the previous three volumes published. Audience: Specialists, graduate and senior undergraduate students in physics, chemistry and electrical engineering.
Publisher: Springer
ISBN: 9780792348269
Category : Science
Languages : en
Pages : 480
Book Description
This volume establishes the fact that electrodynamics is by no means a completely understood theory by bringing together several in-depth review papers from leading specialists. The major portion of the volume is built around the nonlinear structure which leads to the B(3) field introduced in the previous three volumes published. Audience: Specialists, graduate and senior undergraduate students in physics, chemistry and electrical engineering.