Author: Jack A. Rall
Publisher: Springer
ISBN: 1493920073
Category : Medical
Languages : en
Pages : 480
Book Description
This book describes the evolution of ideas relating to the mechanism of muscular contraction since the discovery of sliding filaments in 1954. An amazing variety of experimental techniques have been employed to investigate the mechanism of muscular contraction and relaxation. Some background of these various techniques is presented in order to gain a fuller appreciation of their strengths and weaknesses. Controversies in the muscle field are discussed along with some missed opportunities and false trails. The pathway to ATP and the high energy phosphate bond will be discussed, as well as the discovery of myosin, contraction coupling and the emergence of cell and molecular biology in the muscle field. Numerous figures from original papers are also included for readers to see the data that led to important conclusions. This book is published on behalf of the American Physiological Society by Springer. Access to APS books published with Springer is free to APS members.
Mechanism of Muscular Contraction
Author: Jack A. Rall
Publisher: Springer
ISBN: 1493920073
Category : Medical
Languages : en
Pages : 480
Book Description
This book describes the evolution of ideas relating to the mechanism of muscular contraction since the discovery of sliding filaments in 1954. An amazing variety of experimental techniques have been employed to investigate the mechanism of muscular contraction and relaxation. Some background of these various techniques is presented in order to gain a fuller appreciation of their strengths and weaknesses. Controversies in the muscle field are discussed along with some missed opportunities and false trails. The pathway to ATP and the high energy phosphate bond will be discussed, as well as the discovery of myosin, contraction coupling and the emergence of cell and molecular biology in the muscle field. Numerous figures from original papers are also included for readers to see the data that led to important conclusions. This book is published on behalf of the American Physiological Society by Springer. Access to APS books published with Springer is free to APS members.
Publisher: Springer
ISBN: 1493920073
Category : Medical
Languages : en
Pages : 480
Book Description
This book describes the evolution of ideas relating to the mechanism of muscular contraction since the discovery of sliding filaments in 1954. An amazing variety of experimental techniques have been employed to investigate the mechanism of muscular contraction and relaxation. Some background of these various techniques is presented in order to gain a fuller appreciation of their strengths and weaknesses. Controversies in the muscle field are discussed along with some missed opportunities and false trails. The pathway to ATP and the high energy phosphate bond will be discussed, as well as the discovery of myosin, contraction coupling and the emergence of cell and molecular biology in the muscle field. Numerous figures from original papers are also included for readers to see the data that led to important conclusions. This book is published on behalf of the American Physiological Society by Springer. Access to APS books published with Springer is free to APS members.
Mechanism of Muscular Contraction
Author: Jack A. Rall
Publisher: Springer
ISBN: 9781493920082
Category : Medical
Languages : en
Pages : 471
Book Description
This book describes the evolution of ideas relating to the mechanism of muscular contraction since the discovery of sliding filaments in 1954. An amazing variety of experimental techniques have been employed to investigate the mechanism of muscular contraction and relaxation. Some background of these various techniques is presented in order to gain a fuller appreciation of their strengths and weaknesses. Controversies in the muscle field are discussed along with some missed opportunities and false trails. The pathway to ATP and the high energy phosphate bond will be discussed, as well as the discovery of myosin, contraction coupling and the emergence of cell and molecular biology in the muscle field. Numerous figures from original papers are also included for readers to see the data that led to important conclusions. This book is published on behalf of the American Physiological Society by Springer. Access to APS books published with Springer is free to APS members.
Publisher: Springer
ISBN: 9781493920082
Category : Medical
Languages : en
Pages : 471
Book Description
This book describes the evolution of ideas relating to the mechanism of muscular contraction since the discovery of sliding filaments in 1954. An amazing variety of experimental techniques have been employed to investigate the mechanism of muscular contraction and relaxation. Some background of these various techniques is presented in order to gain a fuller appreciation of their strengths and weaknesses. Controversies in the muscle field are discussed along with some missed opportunities and false trails. The pathway to ATP and the high energy phosphate bond will be discussed, as well as the discovery of myosin, contraction coupling and the emergence of cell and molecular biology in the muscle field. Numerous figures from original papers are also included for readers to see the data that led to important conclusions. This book is published on behalf of the American Physiological Society by Springer. Access to APS books published with Springer is free to APS members.
The Sliding-Filament Theory of Muscle Contraction
Author: David Aitchison Smith
Publisher: Springer
ISBN: 3030035263
Category : Medical
Languages : en
Pages : 433
Book Description
Understanding the molecular mechanism of muscle contraction started with the discovery that striated muscle is composed of interdigitating filaments which slide against each other. Sliding filaments and the working-stroke mechanism provide the framework for individual myosin motors to act in parallel, generating tension and loaded shortening with an efficient use of chemical energy. Our knowledge of this exquisitely structured molecular machine has exploded in the last four decades, thanks to a bewildering array of techniques for studying intact muscle, muscle fibres, myofibrils and single myosin molecules. After reviewing the mechanical and biochemical background, this monograph shows how old and new experimental discoveries can be modelled, interpreted and incorporated into a coherent mathematical theory of contractility at the molecular level. The theory is applied to steady-state and transient phenomena in muscle fibres, wing-beat oscillations in insect flight muscle, motility assays and single-molecule experiments with optical trapping. Such a synthesis addresses major issues, most notably whether a single myosin motor is driven by a working stroke or a ratchet mechanism, how the working stroke is coupled to phosphate release, and whether one cycle of attachment is driven by the hydrolysis of one molecule of ATP. Ways in which the theory can be extended are explored in appendices. A separate theory is required for the cooperative regulation of muscle by calcium via tropomyosin and troponin on actin filaments. The book reviews the evolution of models for actin-based regulation, culminating in a model motivated by cryo-EM studies where tropomyosin protomers are linked to form a continuous flexible chain. It also explores muscle behaviour as a function of calcium level, including emergent phenomena such as spontaneous oscillatory contractions and direct myosin regulation by its regulatory light chains. Contraction models can be extended to all levels of calcium-activation by embedding them in a cooperative theory of thin-filament regulation, and a method for achieving this grand synthesis is proposed. Dr. David Aitchison Smith is a theoretical physicist with thirty years of research experience in modelling muscle contractility, in collaboration with experimental groups in different laboratories.
Publisher: Springer
ISBN: 3030035263
Category : Medical
Languages : en
Pages : 433
Book Description
Understanding the molecular mechanism of muscle contraction started with the discovery that striated muscle is composed of interdigitating filaments which slide against each other. Sliding filaments and the working-stroke mechanism provide the framework for individual myosin motors to act in parallel, generating tension and loaded shortening with an efficient use of chemical energy. Our knowledge of this exquisitely structured molecular machine has exploded in the last four decades, thanks to a bewildering array of techniques for studying intact muscle, muscle fibres, myofibrils and single myosin molecules. After reviewing the mechanical and biochemical background, this monograph shows how old and new experimental discoveries can be modelled, interpreted and incorporated into a coherent mathematical theory of contractility at the molecular level. The theory is applied to steady-state and transient phenomena in muscle fibres, wing-beat oscillations in insect flight muscle, motility assays and single-molecule experiments with optical trapping. Such a synthesis addresses major issues, most notably whether a single myosin motor is driven by a working stroke or a ratchet mechanism, how the working stroke is coupled to phosphate release, and whether one cycle of attachment is driven by the hydrolysis of one molecule of ATP. Ways in which the theory can be extended are explored in appendices. A separate theory is required for the cooperative regulation of muscle by calcium via tropomyosin and troponin on actin filaments. The book reviews the evolution of models for actin-based regulation, culminating in a model motivated by cryo-EM studies where tropomyosin protomers are linked to form a continuous flexible chain. It also explores muscle behaviour as a function of calcium level, including emergent phenomena such as spontaneous oscillatory contractions and direct myosin regulation by its regulatory light chains. Contraction models can be extended to all levels of calcium-activation by embedding them in a cooperative theory of thin-filament regulation, and a method for achieving this grand synthesis is proposed. Dr. David Aitchison Smith is a theoretical physicist with thirty years of research experience in modelling muscle contractility, in collaboration with experimental groups in different laboratories.
Anatomy and Physiology
Author: J. Gordon Betts
Publisher:
ISBN: 9781947172807
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781947172807
Category :
Languages : en
Pages : 0
Book Description
Keynes & Aidley's Nerve and Muscle
Author: Christopher L.-H. Huang
Publisher: Cambridge University Press
ISBN: 1108495052
Category : Medical
Languages : en
Pages : 327
Book Description
A complete, yet accessible and up-to-date, introduction to the cellular physiology of nerve, and skeletal, cardiac and smooth muscle.
Publisher: Cambridge University Press
ISBN: 1108495052
Category : Medical
Languages : en
Pages : 327
Book Description
A complete, yet accessible and up-to-date, introduction to the cellular physiology of nerve, and skeletal, cardiac and smooth muscle.
Skeletal Muscle Mechanics
Author: W. Herzog
Publisher: John Wiley & Sons
ISBN: 9780471492382
Category : Science
Languages : en
Pages : 586
Book Description
Dieses Teilgebiet der Biomechanik ist für Sportwissenschaftler und Physiologen von großer Bedeutung! Die umfassende, aktuelle Abhandlung der Skelettmuskelmechanik beschäftigt sich mit drei Themenkreisen: den Mechanismen der Skelettmuskelkontraktion, der Muskelfunktion in vivo und theoretischen Modellen der Muskelfunktion. Auch ein knapper historischer Abriß und ein Ausblick auf noch offene Fragen fehlen nicht. (08/00)
Publisher: John Wiley & Sons
ISBN: 9780471492382
Category : Science
Languages : en
Pages : 586
Book Description
Dieses Teilgebiet der Biomechanik ist für Sportwissenschaftler und Physiologen von großer Bedeutung! Die umfassende, aktuelle Abhandlung der Skelettmuskelmechanik beschäftigt sich mit drei Themenkreisen: den Mechanismen der Skelettmuskelkontraktion, der Muskelfunktion in vivo und theoretischen Modellen der Muskelfunktion. Auch ein knapper historischer Abriß und ein Ausblick auf noch offene Fragen fehlen nicht. (08/00)
Nerve and Muscle
Author: R. D. Keynes
Publisher: Cambridge University Press
ISBN: 9780521805841
Category : Medical
Languages : en
Pages : 196
Book Description
Essential textbook for all undergraduate students of neurobiology, physiology, cell biology and preclinical medicine.
Publisher: Cambridge University Press
ISBN: 9780521805841
Category : Medical
Languages : en
Pages : 196
Book Description
Essential textbook for all undergraduate students of neurobiology, physiology, cell biology and preclinical medicine.
Anatomy & Physiology
Author: Lindsay Biga
Publisher:
ISBN: 9781955101158
Category :
Languages : en
Pages :
Book Description
A version of the OpenStax text
Publisher:
ISBN: 9781955101158
Category :
Languages : en
Pages :
Book Description
A version of the OpenStax text
Fundamentals of Anaesthesia
Author: Colin Pinnock
Publisher: Cambridge University Press
ISBN: 9780521690799
Category : Medical
Languages : en
Pages : 990
Book Description
The second edition of Fundamentals of Anaesthesia builds upon the success of the first edition, and encapsulates the modern practice of anaesthesia in a single volume. Written and edited by a team of expert contributors, it provides a comprehensive but easily readable account of all of the information required by the FRCA Primary examination candidate and has been expanded to include more detail on all topics and to include new topics now covered in the examination. As with the previous edition, presentation of information is clear and concise, with the use of lists, tables, summary boxes and line illustrations where necessary to highlight important information and aid the understanding of complex topics. Great care has been taken to ensure an unrivalled consistency of style and presentation throughout.
Publisher: Cambridge University Press
ISBN: 9780521690799
Category : Medical
Languages : en
Pages : 990
Book Description
The second edition of Fundamentals of Anaesthesia builds upon the success of the first edition, and encapsulates the modern practice of anaesthesia in a single volume. Written and edited by a team of expert contributors, it provides a comprehensive but easily readable account of all of the information required by the FRCA Primary examination candidate and has been expanded to include more detail on all topics and to include new topics now covered in the examination. As with the previous edition, presentation of information is clear and concise, with the use of lists, tables, summary boxes and line illustrations where necessary to highlight important information and aid the understanding of complex topics. Great care has been taken to ensure an unrivalled consistency of style and presentation throughout.
Fibrous Proteins: Muscle and Molecular Motors
Author: John M. Squire
Publisher: Gulf Professional Publishing
ISBN: 9780120342716
Category : Science
Languages : en
Pages : 558
Book Description
Molecular Motors and Muscle is the second of a three-part series on Fibrous Proteins. The books are based on a very successful workshop in Alpbach, Austria on the general topic of Fibrous Proteins that gave rise to the award-winning issue of Journal of Structural Biology. There are two major types of protein: Globular proteins which are often enzymes which speed up biochemical reactions and Fibrous proteins which often have more structural roles but can also have dynamic properties. Fibrous proteins are usually either elongated molecules which pack together to form long filaments, as in the case of the intermediate filaments in our hair and skin and as in collagen fibrils in tendons and bones or they are globular proteins which aggregate linearly to form long filaments, such as actin filaments or microtubules. Fibrous proteins act as molecular scaffolds in cells, they can be involved in transport of cell organelles or even on a visible scale as in our muscles. They provide the supporting structures of our skeletons, bones, tendons, cartilage, and skin. They define the mechanical properties of our internal hollow organs such as the intestines, heart, and blood vessels. They are vital for life and represent a fascinating subset of the proteome. Advances in Protein Chemistry is available online on ScienceDirect - full-text online of volumes 53 onwards. Elsevier book series on ScienceDirect gives multiple users throughout an institution simultaneous online access to an important compliment to primary research. Digital delivery ensures users reliable, 24-hour access to the latest peer-reviewed content. The Elsevier book series are compiled and written by the most highly regarded authors in their fields and are selected from across the globe using Elsevier's extensive researcher network. For more information about the Elsevier Book Series on ScienceDirect Program, please visit: http://www.info.sciencedirect.com/bookseries/ *Allows a comparison to be made between unique but related structures. *Quality of the text and illustrations allows ready comprehension of key protein design features. *Identifies fibrous protein sequence features for analysis of the human genome. *Analyzes design principles for fibrous protein sequences thus leading potentially to development of new devices by nanofabrication.
Publisher: Gulf Professional Publishing
ISBN: 9780120342716
Category : Science
Languages : en
Pages : 558
Book Description
Molecular Motors and Muscle is the second of a three-part series on Fibrous Proteins. The books are based on a very successful workshop in Alpbach, Austria on the general topic of Fibrous Proteins that gave rise to the award-winning issue of Journal of Structural Biology. There are two major types of protein: Globular proteins which are often enzymes which speed up biochemical reactions and Fibrous proteins which often have more structural roles but can also have dynamic properties. Fibrous proteins are usually either elongated molecules which pack together to form long filaments, as in the case of the intermediate filaments in our hair and skin and as in collagen fibrils in tendons and bones or they are globular proteins which aggregate linearly to form long filaments, such as actin filaments or microtubules. Fibrous proteins act as molecular scaffolds in cells, they can be involved in transport of cell organelles or even on a visible scale as in our muscles. They provide the supporting structures of our skeletons, bones, tendons, cartilage, and skin. They define the mechanical properties of our internal hollow organs such as the intestines, heart, and blood vessels. They are vital for life and represent a fascinating subset of the proteome. Advances in Protein Chemistry is available online on ScienceDirect - full-text online of volumes 53 onwards. Elsevier book series on ScienceDirect gives multiple users throughout an institution simultaneous online access to an important compliment to primary research. Digital delivery ensures users reliable, 24-hour access to the latest peer-reviewed content. The Elsevier book series are compiled and written by the most highly regarded authors in their fields and are selected from across the globe using Elsevier's extensive researcher network. For more information about the Elsevier Book Series on ScienceDirect Program, please visit: http://www.info.sciencedirect.com/bookseries/ *Allows a comparison to be made between unique but related structures. *Quality of the text and illustrations allows ready comprehension of key protein design features. *Identifies fibrous protein sequence features for analysis of the human genome. *Analyzes design principles for fibrous protein sequences thus leading potentially to development of new devices by nanofabrication.