Measuring the Standard Model and Searching for New Physics with Jet Substructure Using the ATLAS Detector

Measuring the Standard Model and Searching for New Physics with Jet Substructure Using the ATLAS Detector PDF Author: Maximilian Swiatlowski
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Collisions at the Large Hadron Collider have offered an unprecedented window into some of the highest energy scales ever observed in experiments. Understanding these collisions, especially those that produce particles charged under quantum chromodynamics (QCD), requires a deep understanding of jets: the collimated sprays of particles produced by the parton shower and hadronization processes which emerge from the asymptotic freedom of QCD. Recent theoretical advances and the unprecedented capabilities of the ATLAS detector have enabled a new class of jet physics measurements based on the internal structure of jets, referred to as jet substructure. Three new types of measurements relying on jet substructure are presented. The first is a set of measurements sensitive which can discriminate between jets initiated by quarks and gluons. Separation is possible by studying variables sensitive to the magnitude of the color charge. Several such variables are measured, and a data-driven technique is used to construct a tagger, the first of its kind at a hadron collider, which can improve the sensitivity of searches for new physics in hadronic final states. A second measurement studies the color connections of jets in top-antitop events using an observable called the jet pull angle: sensitivity to the color representation of particles decaying to dijet pairs at a hadron collider is demonstrated for the first time. A final analysis searches for R-parity violating supersymmetry (SUSY) in all hadronic final states. These classes of models remove the characteristic missing energy signature which existing SUSY searches rely on, and require new discrimination techniques. Jet substructure provides a powerful handle to analyze these very high multiplicity states using a variable called the total jet mass. No signal is observed over the Standard Model (SM) prediction, and new limits are set on these previously unexplored models. The techniques of jet substructure lie at the hearts of all of these analyses, enabling both new measurements of SM phenomena and entirely new searches for physics beyond the SM.

Measuring the Standard Model and Searching for New Physics with Jet Substructure Using the ATLAS Detector

Measuring the Standard Model and Searching for New Physics with Jet Substructure Using the ATLAS Detector PDF Author: Maximilian Swiatlowski
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Collisions at the Large Hadron Collider have offered an unprecedented window into some of the highest energy scales ever observed in experiments. Understanding these collisions, especially those that produce particles charged under quantum chromodynamics (QCD), requires a deep understanding of jets: the collimated sprays of particles produced by the parton shower and hadronization processes which emerge from the asymptotic freedom of QCD. Recent theoretical advances and the unprecedented capabilities of the ATLAS detector have enabled a new class of jet physics measurements based on the internal structure of jets, referred to as jet substructure. Three new types of measurements relying on jet substructure are presented. The first is a set of measurements sensitive which can discriminate between jets initiated by quarks and gluons. Separation is possible by studying variables sensitive to the magnitude of the color charge. Several such variables are measured, and a data-driven technique is used to construct a tagger, the first of its kind at a hadron collider, which can improve the sensitivity of searches for new physics in hadronic final states. A second measurement studies the color connections of jets in top-antitop events using an observable called the jet pull angle: sensitivity to the color representation of particles decaying to dijet pairs at a hadron collider is demonstrated for the first time. A final analysis searches for R-parity violating supersymmetry (SUSY) in all hadronic final states. These classes of models remove the characteristic missing energy signature which existing SUSY searches rely on, and require new discrimination techniques. Jet substructure provides a powerful handle to analyze these very high multiplicity states using a variable called the total jet mass. No signal is observed over the Standard Model (SM) prediction, and new limits are set on these previously unexplored models. The techniques of jet substructure lie at the hearts of all of these analyses, enabling both new measurements of SM phenomena and entirely new searches for physics beyond the SM.

Searches for New Physics Using Jets with the ATLAS Detector

Searches for New Physics Using Jets with the ATLAS Detector PDF Author: Aviv Ruben Cukierman
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Large Hadron Collider produces particle collisions at the highest energies ever observed in a scientific experiment. This apparatus is built to test the predictions of the Standard Model of Particle Physics, including the existence and properties of the Higgs boson. As a proton-proton collider, quarks and gluons are produced in abundance, which quickly fragment and hadronize into collimated showers of energy called jets. These jets are detected and measured in the ATLAS detector, which is built around the point of the proton-proton collisions to observe the products of these interactions. Three major original research efforts are presented using data from proton-proton collisions observed in ATLAS. The first analyzes events with jets and photons to search for a beyond-the-Standard-Model decay of the Higgs boson. The second utilizes novel techniques in weak supervision to perform a generic data-driven resonance search in events with two jets. The third formalizes the calibration of the jet energies observed in the ATLAS detector, and further proposes a new method to improve this calibration with machine learning. The work presented here addresses some of the key questions in particle physics today. By searching for new physics, it is possible to shed light on the nature of the Higgs boson and the possibility of physics beyond the Standard Model. These searches focus on processes involving multiple jets in the final state, which motivates innovations in the reconstruction of jet energies. In addition to setting new bounds on theoretically interesting models, the innovations in object reconstruction and analysis techniques developed in this work can be applied in other ATLAS efforts using currently available data or data gathered in the future.

Advances in Jet Substructure at the LHC

Advances in Jet Substructure at the LHC PDF Author: Roman Kogler
Publisher: Springer Nature
ISBN: 3030728587
Category : Science
Languages : en
Pages : 287

Get Book Here

Book Description
This book introduces the reader to the field of jet substructure, starting from the basic considerations for capturing decays of boosted particles in individual jets, to explaining state-of-the-art techniques. Jet substructure methods have become ubiquitous in data analyses at the LHC, with diverse applications stemming from the abundance of jets in proton-proton collisions, the presence of pileup and multiple interactions, and the need to reconstruct and identify decays of highly-Lorentz boosted particles. The last decade has seen a vast increase in our knowledge of all aspects of the field, with a proliferation of new jet substructure algorithms, calculations and measurements which are presented in this book. Recent developments and algorithms are described and put into the larger experimental context. Their usefulness and application are shown in many demonstrative examples and the phenomenological and experimental effects influencing their performance are discussed. A comprehensive overview is given of measurements and searches for new phenomena performed by the ATLAS and CMS Collaborations. This book shows the impressive versatility of jet substructure methods at the LHC.

Jet Calibration, Cross Section Measurements and New Physics Searches with the ATLAS Experiment Within the Run 2 Data

Jet Calibration, Cross Section Measurements and New Physics Searches with the ATLAS Experiment Within the Run 2 Data PDF Author: Robert Hankache
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The Standard Model is the current theory used to describe the elementary particles and their fundamental interactions (except the gravity). My PhD within the ATLAS experiment put this model under test using objects called jets, to study final state particles that interact through the strong force. First, I contributed to a method of jet calibration aiming at calibrating the energy scale of jets in the forward region of the detector with respect to central region. I improved the calibration by making it faster and more precise. Next, I worked on a search analysis of new physics using events with two jets. The Standard Model predicts a smooth distribution of the invariant mass of di-jets, hence we search for a bump which could come from a new particle. Since no significant bump is found, we put limits on signals as predicted by Beyond Standard Model theories and on model-independent signals. Last, I developed a new physics analysis measuring the leading (highest in transverse momentum) jet differential cross-section as a function of transverse momentum and rapidity. The challenge was to factorize the detector effects (resolution and acceptance) from the observable, which I did using a new unfolding technique. I also worked on the theoretical predictions calculation which was very challenging to perform and needed the implementation of special regularizations. The measurement and the predictions are then compared and tensions are observed due to the difficulties of theoretical predictions calculation.

Looking Inside Jets

Looking Inside Jets PDF Author: Simone Marzani
Publisher: Springer
ISBN: 3030157091
Category : Science
Languages : en
Pages : 205

Get Book Here

Book Description
This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.

Standard Model Measurements with the ATLAS Detector

Standard Model Measurements with the ATLAS Detector PDF Author: Jana Nováková
Publisher: Springer Science & Business Media
ISBN: 3319008102
Category : Science
Languages : en
Pages : 100

Get Book Here

Book Description
This thesis deals with two main procedures performed with the ATLAS detector at the Large Hadron Collider (LHC). The noise description in the hadronic calorimeter TileCal represents a very valuable technical job. The second part presents a fruitful physics analysis - the cross section measurement of the process p+p → Z0 → τ + τ. The Monte Carlo simulations of the TileCal are described in the first part of the thesis, including a detailed treatment of the electronic noise and multiple interactions (so-called pile-up). An accurate description of both is crucial for the reconstruction of e.g. jets or hadronic tau-jets. The second part reports a Standard Model measurement of the Z0 → τ + τ process with the emphasis on the final state with an electron and a hadronically decaying tau-lepton. The Z0 → τ + τ channel forms the dominant background in the search for Higgs bosons decaying into tau lepton pairs, and thus the good understanding achieved here can facilitate more sensitive Higgs detection.

Lectures on LHC Physics

Lectures on LHC Physics PDF Author: Tilman Plehn
Publisher: Springer
ISBN: 3319059424
Category : Science
Languages : en
Pages : 340

Get Book Here

Book Description
With the discovery of the Higgs boson, the LHC experiments have closed the most important gap in our understanding of fundamental interactions, confirming that such interactions between elementary particles can be described by quantum field theory, more specifically by a renormalizable gauge theory. This theory is a priori valid for arbitrarily high energy scales and does not require an ultraviolet completion. Yet, when trying to apply the concrete knowledge of quantum field theory to actual LHC physics - in particular to the Higgs sector and certain regimes of QCD - one inevitably encounters an intricate maze of phenomenological know-how, common lore and other, often historically developed intuitions about what works and what doesn’t. These lectures cover three aspects to help understand LHC results in the Higgs sector and in searches for physics beyond the Standard Model: they discuss the many facets of Higgs physics, which is at the core of this significantly expanded second edition; then QCD, to the degree relevant for LHC measurements; as well as further standard phenomenological background knowledge. They are intended to serve as a brief but sufficiently detailed primer on LHC physics to enable graduate students and all newcomers to the field to find their way through the more advanced literature, and to help those starting to work in this very timely and exciting field of research. Advanced readers will benefit from this course-based text for their own lectures and seminars. .

Measuring Jet Substructure in Topologies Containing W, Top and Light Jets with the ATLAS Detector

Measuring Jet Substructure in Topologies Containing W, Top and Light Jets with the ATLAS Detector PDF Author: Amal Vaidya
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Dijet Angular Distributions in Proton-Proton Collisions

Dijet Angular Distributions in Proton-Proton Collisions PDF Author: Nele Boelaert
Publisher: Springer Science & Business Media
ISBN: 3642245978
Category : Science
Languages : en
Pages : 176

Get Book Here

Book Description
This thesis is based on the first data from the Large Hadron Collider (LHC) at CERN. Its theme can be described as the classical Rutherford scattering experiment adapted to the LHC: measurement of scattering angles to search for new physics and substructure. At the LHC, colliding quarks and gluons exit the proton collisions as collimated particle showers, or jets. The thesis presents studies of the scattering angles of these jets. It includes a phenomenological study at the LHC design energy of 14 TeV, where a model of so-called large extra dimensions is used as a benchmark process for the sensitivity to new physics. The experimental result is the first measurement, made in 2010, by ATLAS, operating at the LHC start-up energy of 7 TeV. The result is compatible with the Standard Model and demonstrates how well the physics and the apparatus are understood. The first data is a tiny fraction of what will be accumulated in the coming years, and this study has set the stage for performing these measurements with confidence as the LHC accumulates luminosity and increases its energy, thereby probing smaller length scales.

Applying Anomaly Detection to Search for New Physics with the ATLAS Detector at the Large Hadron Collider

Applying Anomaly Detection to Search for New Physics with the ATLAS Detector at the Large Hadron Collider PDF Author: Alan Kahn
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
A search for a heavy new particle Y decaying to a Standard Model Higgs boson H and another new particle X is presented. The search is performed using 139 fb−1 of p−p collision data at √s = 13 TeV recorded by the ATLAS detector. The H boson is identified through its decays to bb, with the only assumption applied to X being that it decays hadronically. The X is identified through a novel anomaly detection method via the use of a Variational Recurrent Neural Network trained directly on data collected by the ATLAS detector. This effort marks the first application of a fully unsupervised machine learning method to an ATLAS analysis. An additional benchmark based on interpreting the Y → XH process in the context of a heavy vector triplet model in which the X decays to two quarks defines an additional signal region in which upper limits on the HVT process cross section are reported at 95% confidence level.