Author: Edward Layer
Publisher: Springer Science & Business Media
ISBN: 364204588X
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
The development and use of models of various objects is becoming a more common practice in recent days. This is due to the ease with which models can be developed and examined through the use of computers and appropriate software. Of those two, the former - high-speed computers - are easily accessible nowadays, and the latter - existing programs - are being updated almost continuously, and at the same time new powerful software is being developed. Usually a model represents correlations between some processes and their interactions, with better or worse quality of representation. It details and characterizes a part of the real world taking into account a structure of phenomena, as well as quantitative and qualitative relations. There are a great variety of models. Modelling is carried out in many diverse fields. All types of natural phenomena in the area of biology, ecology and medicine are possible subjects for modelling. Models stand for and represent technical objects in physics, chemistry, engineering, social events and behaviours in sociology, financial matters, investments and stock markets in economy, strategy and tactics, defence, security and safety in military fields. There is one common point for all models. We expect them to fulfil the validity of prediction. It means that through the analysis of models it is possible to predict phenomena, which may occur in a fragment of the real world represented by a given model. We also expect to be able to predict future reactions to signals from the outside world.
Measurements, Modelling and Simulation of Dynamic Systems
Author: Edward Layer
Publisher: Springer Science & Business Media
ISBN: 364204588X
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
The development and use of models of various objects is becoming a more common practice in recent days. This is due to the ease with which models can be developed and examined through the use of computers and appropriate software. Of those two, the former - high-speed computers - are easily accessible nowadays, and the latter - existing programs - are being updated almost continuously, and at the same time new powerful software is being developed. Usually a model represents correlations between some processes and their interactions, with better or worse quality of representation. It details and characterizes a part of the real world taking into account a structure of phenomena, as well as quantitative and qualitative relations. There are a great variety of models. Modelling is carried out in many diverse fields. All types of natural phenomena in the area of biology, ecology and medicine are possible subjects for modelling. Models stand for and represent technical objects in physics, chemistry, engineering, social events and behaviours in sociology, financial matters, investments and stock markets in economy, strategy and tactics, defence, security and safety in military fields. There is one common point for all models. We expect them to fulfil the validity of prediction. It means that through the analysis of models it is possible to predict phenomena, which may occur in a fragment of the real world represented by a given model. We also expect to be able to predict future reactions to signals from the outside world.
Publisher: Springer Science & Business Media
ISBN: 364204588X
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
The development and use of models of various objects is becoming a more common practice in recent days. This is due to the ease with which models can be developed and examined through the use of computers and appropriate software. Of those two, the former - high-speed computers - are easily accessible nowadays, and the latter - existing programs - are being updated almost continuously, and at the same time new powerful software is being developed. Usually a model represents correlations between some processes and their interactions, with better or worse quality of representation. It details and characterizes a part of the real world taking into account a structure of phenomena, as well as quantitative and qualitative relations. There are a great variety of models. Modelling is carried out in many diverse fields. All types of natural phenomena in the area of biology, ecology and medicine are possible subjects for modelling. Models stand for and represent technical objects in physics, chemistry, engineering, social events and behaviours in sociology, financial matters, investments and stock markets in economy, strategy and tactics, defence, security and safety in military fields. There is one common point for all models. We expect them to fulfil the validity of prediction. It means that through the analysis of models it is possible to predict phenomena, which may occur in a fragment of the real world represented by a given model. We also expect to be able to predict future reactions to signals from the outside world.
Modeling, Identification and Simulation of Dynamical Systems
Author: P. P. J. van den Bosch
Publisher: CRC Press
ISBN: 0429605927
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book gives an in-depth introduction to the areas of modeling, identification, simulation, and optimization. These scientific topics play an increasingly dominant part in many engineering areas such as electrotechnology, mechanical engineering, aerospace, and physics. This book represents a unique and concise treatment of the mutual interactions among these topics. Techniques for solving general nonlinear optimization problems as they arise in identification and many synthesis and design methods are detailed. The main points in deriving mathematical models via prior knowledge concerning the physics describing a system are emphasized. Several chapters discuss the identification of black-box models. Simulation is introduced as a numerical tool for calculating time responses of almost any mathematical model. The last chapter covers optimization, a generally applicable tool for formulating and solving many engineering problems.
Publisher: CRC Press
ISBN: 0429605927
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book gives an in-depth introduction to the areas of modeling, identification, simulation, and optimization. These scientific topics play an increasingly dominant part in many engineering areas such as electrotechnology, mechanical engineering, aerospace, and physics. This book represents a unique and concise treatment of the mutual interactions among these topics. Techniques for solving general nonlinear optimization problems as they arise in identification and many synthesis and design methods are detailed. The main points in deriving mathematical models via prior knowledge concerning the physics describing a system are emphasized. Several chapters discuss the identification of black-box models. Simulation is introduced as a numerical tool for calculating time responses of almost any mathematical model. The last chapter covers optimization, a generally applicable tool for formulating and solving many engineering problems.
Modelling and Simulation
Author: Louis G. Birta
Publisher: Springer Science & Business Media
ISBN: 1846286212
Category : Computers
Languages : en
Pages : 463
Book Description
This book provides a balanced and integrated presentation of modelling and simulation activity for both Discrete Event Dynamic Systems (DEDS) and Continuous Time Dynamic Systems (CYDS). The authors establish a clear distinction between the activity of modelling and that of simulation, maintaining this distinction throughout. The text offers a novel project-oriented approach for developing the modelling and simulation methodology, providing a solid basis for demonstrating the dependency of model structure and granularity on project goals. Comprehensive presentation of the verification and validation activities within the modelling and simulation context is also shown.
Publisher: Springer Science & Business Media
ISBN: 1846286212
Category : Computers
Languages : en
Pages : 463
Book Description
This book provides a balanced and integrated presentation of modelling and simulation activity for both Discrete Event Dynamic Systems (DEDS) and Continuous Time Dynamic Systems (CYDS). The authors establish a clear distinction between the activity of modelling and that of simulation, maintaining this distinction throughout. The text offers a novel project-oriented approach for developing the modelling and simulation methodology, providing a solid basis for demonstrating the dependency of model structure and granularity on project goals. Comprehensive presentation of the verification and validation activities within the modelling and simulation context is also shown.
Modelling and Parameter Estimation of Dynamic Systems
Author: J.R. Raol
Publisher: IET
ISBN: 0863413633
Category : Mathematics
Languages : en
Pages : 405
Book Description
This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.
Publisher: IET
ISBN: 0863413633
Category : Mathematics
Languages : en
Pages : 405
Book Description
This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.
Modeling and Analysis of Dynamic Systems
Author: Charles M. Close
Publisher: John Wiley & Sons
ISBN: 0471394424
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
The third edition of Modeling and Anaysis of Dynamic Systems continues to present students with the methodology applicable to the modeling and analysis of a variety of dynamic systems, regardless of their physical origin. It includes detailed modeling of mechanical, electrical, electro-mechanical, thermal, and fluid systems. Models are developed in the form of state-variable equations, input-output differential equations, transfer functions, and block diagrams. The Laplace transform is used for analytical solutions. Computer solutions are based on MATLAB and Simulink. Examples include both linear and nonlinear systems. An introduction is given to the modeling and design tools for feedback control systems. The text offers considerable flexibility in the selection of material for a specific course. Students majoring in many different engineering disciplines have used the text. Such courses are frequently followed by control-system design courses in the various disciplines.
Publisher: John Wiley & Sons
ISBN: 0471394424
Category : Technology & Engineering
Languages : en
Pages : 592
Book Description
The third edition of Modeling and Anaysis of Dynamic Systems continues to present students with the methodology applicable to the modeling and analysis of a variety of dynamic systems, regardless of their physical origin. It includes detailed modeling of mechanical, electrical, electro-mechanical, thermal, and fluid systems. Models are developed in the form of state-variable equations, input-output differential equations, transfer functions, and block diagrams. The Laplace transform is used for analytical solutions. Computer solutions are based on MATLAB and Simulink. Examples include both linear and nonlinear systems. An introduction is given to the modeling and design tools for feedback control systems. The text offers considerable flexibility in the selection of material for a specific course. Students majoring in many different engineering disciplines have used the text. Such courses are frequently followed by control-system design courses in the various disciplines.
Identification of Dynamic Systems
Author: Rolf Isermann
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Modelling and Control of Dynamic Systems Using Gaussian Process Models
Author: Juš Kocijan
Publisher: Springer
ISBN: 3319210211
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.
Publisher: Springer
ISBN: 3319210211
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.
Dynamic Systems Biology Modeling and Simulation
Author: Joseph DiStefano III
Publisher: Academic Press
ISBN: 0124104932
Category : Science
Languages : en
Pages : 886
Book Description
Dynamic Systems Biology Modeling and Simuation consolidates and unifies classical and contemporary multiscale methodologies for mathematical modeling and computer simulation of dynamic biological systems – from molecular/cellular, organ-system, on up to population levels. The book pedagogy is developed as a well-annotated, systematic tutorial – with clearly spelled-out and unified nomenclature – derived from the author's own modeling efforts, publications and teaching over half a century. Ambiguities in some concepts and tools are clarified and others are rendered more accessible and practical. The latter include novel qualitative theory and methodologies for recognizing dynamical signatures in data using structural (multicompartmental and network) models and graph theory; and analyzing structural and measurement (data) models for quantification feasibility. The level is basic-to-intermediate, with much emphasis on biomodeling from real biodata, for use in real applications. - Introductory coverage of core mathematical concepts such as linear and nonlinear differential and difference equations, Laplace transforms, linear algebra, probability, statistics and stochastics topics - The pertinent biology, biochemistry, biophysics or pharmacology for modeling are provided, to support understanding the amalgam of "math modeling with life sciences - Strong emphasis on quantifying as well as building and analyzing biomodels: includes methodology and computational tools for parameter identifiability and sensitivity analysis; parameter estimation from real data; model distinguishability and simplification; and practical bioexperiment design and optimization - Companion website provides solutions and program code for examples and exercises using Matlab, Simulink, VisSim, SimBiology, SAAMII, AMIGO, Copasi and SBML-coded models - A full set of PowerPoint slides are available from the author for teaching from his textbook. He uses them to teach a 10 week quarter upper division course at UCLA, which meets twice a week, so there are 20 lectures. They can easily be augmented or stretched for a 15 week semester course - Importantly, the slides are editable, so they can be readily adapted to a lecturer's personal style and course content needs. The lectures are based on excerpts from 12 of the first 13 chapters of DSBMS. They are designed to highlight the key course material, as a study guide and structure for students following the full text content - The complete PowerPoint slide package (~25 MB) can be obtained by instructors (or prospective instructors) by emailing the author directly, at: [email protected]
Publisher: Academic Press
ISBN: 0124104932
Category : Science
Languages : en
Pages : 886
Book Description
Dynamic Systems Biology Modeling and Simuation consolidates and unifies classical and contemporary multiscale methodologies for mathematical modeling and computer simulation of dynamic biological systems – from molecular/cellular, organ-system, on up to population levels. The book pedagogy is developed as a well-annotated, systematic tutorial – with clearly spelled-out and unified nomenclature – derived from the author's own modeling efforts, publications and teaching over half a century. Ambiguities in some concepts and tools are clarified and others are rendered more accessible and practical. The latter include novel qualitative theory and methodologies for recognizing dynamical signatures in data using structural (multicompartmental and network) models and graph theory; and analyzing structural and measurement (data) models for quantification feasibility. The level is basic-to-intermediate, with much emphasis on biomodeling from real biodata, for use in real applications. - Introductory coverage of core mathematical concepts such as linear and nonlinear differential and difference equations, Laplace transforms, linear algebra, probability, statistics and stochastics topics - The pertinent biology, biochemistry, biophysics or pharmacology for modeling are provided, to support understanding the amalgam of "math modeling with life sciences - Strong emphasis on quantifying as well as building and analyzing biomodels: includes methodology and computational tools for parameter identifiability and sensitivity analysis; parameter estimation from real data; model distinguishability and simplification; and practical bioexperiment design and optimization - Companion website provides solutions and program code for examples and exercises using Matlab, Simulink, VisSim, SimBiology, SAAMII, AMIGO, Copasi and SBML-coded models - A full set of PowerPoint slides are available from the author for teaching from his textbook. He uses them to teach a 10 week quarter upper division course at UCLA, which meets twice a week, so there are 20 lectures. They can easily be augmented or stretched for a 15 week semester course - Importantly, the slides are editable, so they can be readily adapted to a lecturer's personal style and course content needs. The lectures are based on excerpts from 12 of the first 13 chapters of DSBMS. They are designed to highlight the key course material, as a study guide and structure for students following the full text content - The complete PowerPoint slide package (~25 MB) can be obtained by instructors (or prospective instructors) by emailing the author directly, at: [email protected]
Dynamic Systems
Author: Craig A. Kluever
Publisher: Wiley Global Education
ISBN: 1119601983
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
The simulation of complex, integrated engineering systems is a core tool in industry which has been greatly enhanced by the MATLAB® and Simulink® software programs. The second edition of Dynamic Systems: Modeling, Simulation, and Control teaches engineering students how to leverage powerful simulation environments to analyze complex systems. Designed for introductory courses in dynamic systems and control, this textbook emphasizes practical applications through numerous case studies—derived from top-level engineering from the AMSE Journal of Dynamic Systems. Comprehensive yet concise chapters introduce fundamental concepts while demonstrating physical engineering applications. Aligning with current industry practice, the text covers essential topics such as analysis, design, and control of physical engineering systems, often composed of interacting mechanical, electrical, and fluid subsystem components. Major topics include mathematical modeling, system-response analysis, and feedback control systems. A wide variety of end-of-chapter problems—including conceptual problems, MATLAB® problems, and Engineering Application problems—help students understand and perform numerical simulations for integrated systems.
Publisher: Wiley Global Education
ISBN: 1119601983
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
The simulation of complex, integrated engineering systems is a core tool in industry which has been greatly enhanced by the MATLAB® and Simulink® software programs. The second edition of Dynamic Systems: Modeling, Simulation, and Control teaches engineering students how to leverage powerful simulation environments to analyze complex systems. Designed for introductory courses in dynamic systems and control, this textbook emphasizes practical applications through numerous case studies—derived from top-level engineering from the AMSE Journal of Dynamic Systems. Comprehensive yet concise chapters introduce fundamental concepts while demonstrating physical engineering applications. Aligning with current industry practice, the text covers essential topics such as analysis, design, and control of physical engineering systems, often composed of interacting mechanical, electrical, and fluid subsystem components. Major topics include mathematical modeling, system-response analysis, and feedback control systems. A wide variety of end-of-chapter problems—including conceptual problems, MATLAB® problems, and Engineering Application problems—help students understand and perform numerical simulations for integrated systems.
Modeling and Simulation of Systems Using MATLAB and Simulink
Author: Devendra K. Chaturvedi
Publisher: CRC Press
ISBN: 143980673X
Category : Computers
Languages : en
Pages : 734
Book Description
Not only do modeling and simulation help provide a better understanding of how real-world systems function, they also enable us to predict system behavior before a system is actually built and analyze systems accurately under varying operating conditions. Modeling and Simulation of Systems Using MATLAB® and Simulink® provides comprehensive, state-of-the-art coverage of all the important aspects of modeling and simulating both physical and conceptual systems. Various real-life examples show how simulation plays a key role in understanding real-world systems. The author also explains how to effectively use MATLAB and Simulink software to successfully apply the modeling and simulation techniques presented. After introducing the underlying philosophy of systems, the book offers step-by-step procedures for modeling different types of systems using modeling techniques, such as the graph-theoretic approach, interpretive structural modeling, and system dynamics modeling. It then explores how simulation evolved from pre-computer days into the current science of today. The text also presents modern soft computing techniques, including artificial neural networks, fuzzy systems, and genetic algorithms, for modeling and simulating complex and nonlinear systems. The final chapter addresses discrete systems modeling. Preparing both undergraduate and graduate students for advanced modeling and simulation courses, this text helps them carry out effective simulation studies. In addition, graduate students should be able to comprehend and conduct simulation research after completing this book.
Publisher: CRC Press
ISBN: 143980673X
Category : Computers
Languages : en
Pages : 734
Book Description
Not only do modeling and simulation help provide a better understanding of how real-world systems function, they also enable us to predict system behavior before a system is actually built and analyze systems accurately under varying operating conditions. Modeling and Simulation of Systems Using MATLAB® and Simulink® provides comprehensive, state-of-the-art coverage of all the important aspects of modeling and simulating both physical and conceptual systems. Various real-life examples show how simulation plays a key role in understanding real-world systems. The author also explains how to effectively use MATLAB and Simulink software to successfully apply the modeling and simulation techniques presented. After introducing the underlying philosophy of systems, the book offers step-by-step procedures for modeling different types of systems using modeling techniques, such as the graph-theoretic approach, interpretive structural modeling, and system dynamics modeling. It then explores how simulation evolved from pre-computer days into the current science of today. The text also presents modern soft computing techniques, including artificial neural networks, fuzzy systems, and genetic algorithms, for modeling and simulating complex and nonlinear systems. The final chapter addresses discrete systems modeling. Preparing both undergraduate and graduate students for advanced modeling and simulation courses, this text helps them carry out effective simulation studies. In addition, graduate students should be able to comprehend and conduct simulation research after completing this book.