Author: Fuzhen Zhang
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Matrix Theory
Author: Fuzhen Zhang
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Publisher: Springer Science & Business Media
ISBN: 1475757972
Category : Mathematics
Languages : en
Pages : 290
Book Description
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.
Linear Algebra and Matrix Theory
Author: Robert R. Stoll
Publisher: Courier Corporation
ISBN: 0486623181
Category : Mathematics
Languages : en
Pages : 290
Book Description
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
Publisher: Courier Corporation
ISBN: 0486623181
Category : Mathematics
Languages : en
Pages : 290
Book Description
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
Matrix Theory
Author: Joel N. Franklin
Publisher: Courier Corporation
ISBN: 0486136388
Category : Mathematics
Languages : en
Pages : 319
Book Description
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
Publisher: Courier Corporation
ISBN: 0486136388
Category : Mathematics
Languages : en
Pages : 319
Book Description
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
Matrix Theory: A Second Course
Author: James M. Ortega
Publisher: Springer Science & Business Media
ISBN: 1489904719
Category : Mathematics
Languages : en
Pages : 269
Book Description
Linear algebra and matrix theory are essentially synonymous terms for an area of mathematics that has become one of the most useful and pervasive tools in a wide range of disciplines. It is also a subject of great mathematical beauty. In consequence of both of these facts, linear algebra has increasingly been brought into lower levels of the curriculum, either in conjunction with the calculus or separate from it but at the same level. A large and still growing number of textbooks has been written to satisfy this need, aimed at students at the junior, sophomore, or even freshman levels. Thus, most students now obtaining a bachelor's degree in the sciences or engineering have had some exposure to linear algebra. But rarely, even when solid courses are taken at the junior or senior levels, do these students have an adequate working knowledge of the subject to be useful in graduate work or in research and development activities in government and industry. In particular, most elementary courses stop at the point of canonical forms, so that while the student may have "seen" the Jordan and other canonical forms, there is usually little appreciation of their usefulness. And there is almost never time in the elementary courses to deal with more specialized topics like nonnegative matrices, inertia theorems, and so on. In consequence, many graduate courses in mathematics, applied mathe matics, or applications develop certain parts of matrix theory as needed.
Publisher: Springer Science & Business Media
ISBN: 1489904719
Category : Mathematics
Languages : en
Pages : 269
Book Description
Linear algebra and matrix theory are essentially synonymous terms for an area of mathematics that has become one of the most useful and pervasive tools in a wide range of disciplines. It is also a subject of great mathematical beauty. In consequence of both of these facts, linear algebra has increasingly been brought into lower levels of the curriculum, either in conjunction with the calculus or separate from it but at the same level. A large and still growing number of textbooks has been written to satisfy this need, aimed at students at the junior, sophomore, or even freshman levels. Thus, most students now obtaining a bachelor's degree in the sciences or engineering have had some exposure to linear algebra. But rarely, even when solid courses are taken at the junior or senior levels, do these students have an adequate working knowledge of the subject to be useful in graduate work or in research and development activities in government and industry. In particular, most elementary courses stop at the point of canonical forms, so that while the student may have "seen" the Jordan and other canonical forms, there is usually little appreciation of their usefulness. And there is almost never time in the elementary courses to deal with more specialized topics like nonnegative matrices, inertia theorems, and so on. In consequence, many graduate courses in mathematics, applied mathe matics, or applications develop certain parts of matrix theory as needed.
Topics in Random Matrix Theory
Author: Terence Tao
Publisher: American Mathematical Society
ISBN: 147047459X
Category : Mathematics
Languages : en
Pages : 296
Book Description
The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.
Publisher: American Mathematical Society
ISBN: 147047459X
Category : Mathematics
Languages : en
Pages : 296
Book Description
The field of random matrix theory has seen an explosion of activity in recent years, with connections to many areas of mathematics and physics. However, this makes the current state of the field almost too large to survey in a single book. In this graduate text, we focus on one specific sector of the field, namely the spectral distribution of random Wigner matrix ensembles (such as the Gaussian Unitary Ensemble), as well as iid matrix ensembles. The text is largely self-contained and starts with a review of relevant aspects of probability theory and linear algebra. With over 200 exercises, the book is suitable as an introductory text for beginning graduate students seeking to enter the field.
Introduction to Matrix Theory
Author: Arindama Singh
Publisher: Springer Nature
ISBN: 303080481X
Category : Mathematics
Languages : en
Pages : 199
Book Description
This book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in Mathematics. Using elementary row operations and Gram-Schmidt orthogonalization as basic tools the text develops characterization of equivalence and similarity, and various factorizations such as rank factorization, OR-factorization, Schurtriangularization, Diagonalization of normal matrices, Jordan decomposition, singular value decomposition, and polar decomposition. Along with Gauss-Jordan elimination for linear systems, it also discusses best approximations and least-squares solutions. The book includes norms on matrices as a means to deal with iterative solutions of linear systems and exponential of a matrix. The topics in the book are dealt with in a lively manner. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses.
Publisher: Springer Nature
ISBN: 303080481X
Category : Mathematics
Languages : en
Pages : 199
Book Description
This book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in Mathematics. Using elementary row operations and Gram-Schmidt orthogonalization as basic tools the text develops characterization of equivalence and similarity, and various factorizations such as rank factorization, OR-factorization, Schurtriangularization, Diagonalization of normal matrices, Jordan decomposition, singular value decomposition, and polar decomposition. Along with Gauss-Jordan elimination for linear systems, it also discusses best approximations and least-squares solutions. The book includes norms on matrices as a means to deal with iterative solutions of linear systems and exponential of a matrix. The topics in the book are dealt with in a lively manner. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses.
A Survey of Matrix Theory and Matrix Inequalities
Author: Marvin Marcus
Publisher: Courier Corporation
ISBN: 9780486671024
Category : Mathematics
Languages : en
Pages : 212
Book Description
Concise, masterly survey of a substantial part of modern matrix theory introduces broad range of ideas involving both matrix theory and matrix inequalities. Also, convexity and matrices, localization of characteristic roots, proofs of classical theorems and results in contemporary research literature, more. Undergraduate-level. 1969 edition. Bibliography.
Publisher: Courier Corporation
ISBN: 9780486671024
Category : Mathematics
Languages : en
Pages : 212
Book Description
Concise, masterly survey of a substantial part of modern matrix theory introduces broad range of ideas involving both matrix theory and matrix inequalities. Also, convexity and matrices, localization of characteristic roots, proofs of classical theorems and results in contemporary research literature, more. Undergraduate-level. 1969 edition. Bibliography.
Matrix Analysis
Author: Roger A. Horn
Publisher: Cambridge University Press
ISBN: 9780521386326
Category : Mathematics
Languages : en
Pages : 580
Book Description
Matrix Analysis presents the classical and recent results for matrix analysis that have proved to be important to applied mathematics.
Publisher: Cambridge University Press
ISBN: 9780521386326
Category : Mathematics
Languages : en
Pages : 580
Book Description
Matrix Analysis presents the classical and recent results for matrix analysis that have proved to be important to applied mathematics.
A First Course in Random Matrix Theory
Author: Marc Potters
Publisher: Cambridge University Press
ISBN: 1108488080
Category : Computers
Languages : en
Pages : 371
Book Description
An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.
Publisher: Cambridge University Press
ISBN: 1108488080
Category : Computers
Languages : en
Pages : 371
Book Description
An intuitive, up-to-date introduction to random matrix theory and free calculus, with real world illustrations and Big Data applications.
Basic Matrix Theory
Author: Leonard E. Fuller
Publisher: Courier Dover Publications
ISBN: 0486822621
Category : Mathematics
Languages : en
Pages : 257
Book Description
This guide to using matrices as a mathematical tool offers a model for procedure rather than an exposition of theory. Detailed examples illustrate the focus on computational methods. 1962 edition.
Publisher: Courier Dover Publications
ISBN: 0486822621
Category : Mathematics
Languages : en
Pages : 257
Book Description
This guide to using matrices as a mathematical tool offers a model for procedure rather than an exposition of theory. Detailed examples illustrate the focus on computational methods. 1962 edition.