Matrix Operations for Engineers and Scientists

Matrix Operations for Engineers and Scientists PDF Author: Alan Jeffrey
Publisher: Springer Science & Business Media
ISBN: 9048192749
Category : Science
Languages : en
Pages : 323

Get Book Here

Book Description
Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designed to emphasize the theory, that at the same time avoid distractions caused by unnecessary numerical calculations. Hence, examples and exercises in this book have been constructed in such a way that wherever calculations are necessary they are straightforward. For example, when a characteristic equation occurs, its roots (the eigenvalues of a matrix) can be found by inspection. The author of this book is Alan Jeffrey, Emeritus Professor of mathematics at the University of Newcastle upon Tyne. He has given courses on engineering mathematics at UK and US Universities.

Matrix Operations for Engineers and Scientists

Matrix Operations for Engineers and Scientists PDF Author: Alan Jeffrey
Publisher: Springer Science & Business Media
ISBN: 9048192749
Category : Science
Languages : en
Pages : 323

Get Book Here

Book Description
Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designed to emphasize the theory, that at the same time avoid distractions caused by unnecessary numerical calculations. Hence, examples and exercises in this book have been constructed in such a way that wherever calculations are necessary they are straightforward. For example, when a characteristic equation occurs, its roots (the eigenvalues of a matrix) can be found by inspection. The author of this book is Alan Jeffrey, Emeritus Professor of mathematics at the University of Newcastle upon Tyne. He has given courses on engineering mathematics at UK and US Universities.

Matrix Operations for Engineers and Scientists

Matrix Operations for Engineers and Scientists PDF Author: Alan Jeffrey
Publisher:
ISBN: 9789048192755
Category : Algebras, Linear
Languages : en
Pages :

Get Book Here

Book Description
Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designed to emphasize the theory, that at the same time avoid distractions caused by unnecessary numerical calculations. Hence, examples and exercises in this book have been constructed in such a way that wherever calculations are necessary they are straightforward. For example, when a characteristic equation occurs, its roots (the eigenvalues of a matrix) can be found by inspection. The author of this book is Alan Jeffrey, Emeritus Professor of mathematics at the Univesity of Newcastle upon Tyne. He has given courses on engineering mathematics in UK and US Universities.

Mathematical Techniques for Engineers and Scientists

Mathematical Techniques for Engineers and Scientists PDF Author: Larry C. Andrews
Publisher: SPIE Press
ISBN: 9780819445063
Category : Mathematics
Languages : en
Pages : 822

Get Book Here

Book Description
"This self-study text for practicing engineers and scientists explains the mathematical tools that are required for advanced technological applications, but are often not covered in undergraduate school. The authors (University of Central Florida) describe special functions, matrix methods, vector operations, the transformation laws of tensors, the analytic functions of a complex variable, integral transforms, partial differential equations, probability theory, and random processes. The book could also serve as a supplemental graduate text."--Memento.

Matrix Theory and Applications for Scientists and Engineers

Matrix Theory and Applications for Scientists and Engineers PDF Author: Alexander Graham
Publisher: Courier Dover Publications
ISBN: 0486832651
Category : Mathematics
Languages : en
Pages : 305

Get Book Here

Book Description
In this comprehensive text on matrix theory and its applications, Graham explores the underlying principles as well as the numerous applications of the various concepts presented. Includes numerous problems with solutions. 1979 edition.

Matrix Analysis for Scientists and Engineers

Matrix Analysis for Scientists and Engineers PDF Author: Alan J. Laub
Publisher: SIAM
ISBN: 0898715768
Category : Mathematics
Languages : en
Pages : 159

Get Book Here

Book Description
"Prerequisites for using this text are knowledge of calculus and some previous exposure to matrices and linear algebra, including, for example, a basic knowledge of determinants, singularity of matrices, eigenvalues and eigenvectors, and positive definite matrices. There are exercises at the end of each chapter."--BOOK JACKET.

Numerical Methods for Engineers and Scientists Using MATLAB®

Numerical Methods for Engineers and Scientists Using MATLAB® PDF Author: Ramin S. Esfandiari
Publisher: CRC Press
ISBN: 1498777449
Category : Mathematics
Languages : en
Pages : 494

Get Book Here

Book Description
This book provides a pragmatic, methodical and easy-to-follow presentation of numerical methods and their effective implementation using MATLAB, which is introduced at the outset. The author introduces techniques for solving equations of a single variable and systems of equations, followed by curve fitting and interpolation of data. The book also provides detailed coverage of numerical differentiation and integration, as well as numerical solutions of initial-value and boundary-value problems. The author then presents the numerical solution of the matrix eigenvalue problem, which entails approximation of a few or all eigenvalues of a matrix. The last chapter is devoted to numerical solutions of partial differential equations that arise in engineering and science. Each method is accompanied by at least one fully worked-out example showing essential details involved in preliminary hand calculations, as well as computations in MATLAB.

Feedback Systems

Feedback Systems PDF Author: Karl Johan Åström
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages : 523

Get Book Here

Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory

Essential MATLAB for Scientists and Engineers

Essential MATLAB for Scientists and Engineers PDF Author: Daniel T. Valentine
Publisher: Elsevier
ISBN: 008047764X
Category : Computers
Languages : en
Pages : 304

Get Book Here

Book Description
Based on a teach-yourself approach, the fundamentals of MATLAB are illustrated throughout with many examples from a number of different scientific and engineering areas, such as simulation, population modelling, and numerical methods, as well as from business and everyday life. Some of the examples draw on first-year university level maths, but these are self-contained so that their omission will not detract from learning the principles of using MATLAB.This completely revised new edition is based on the latest version of MATLAB. New chapters cover handle graphics, graphical user interfaces (GUIs), structures and cell arrays, and importing/exporting data. The chapter on numerical methods now includes a general GUI-driver ODE solver.* Maintains the easy informal style of the first edition* Teaches the basic principles of scientific programming with MATLAB as the vehicle* Covers the latest version of MATLAB

Advanced Linear Algebra for Engineers with MATLAB

Advanced Linear Algebra for Engineers with MATLAB PDF Author: Sohail A. Dianat
Publisher: CRC Press
ISBN: 1420095242
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
Arming readers with both theoretical and practical knowledge, Advanced Linear Algebra for Engineers with MATLAB® provides real-life problems that readers can use to model and solve engineering and scientific problems in fields ranging from signal processing and communications to electromagnetics and social and health sciences. Facilitating a unique understanding of rapidly evolving linear algebra and matrix methods, this book: Outlines the basic concepts and definitions behind matrices, matrix algebra, elementary matrix operations, and matrix partitions, describing their potential use in signal and image processing applications Introduces concepts of determinants, inverses, and their use in solving linear equations that result from electrical and mechanical-type systems Presents special matrices, linear vector spaces, and fundamental principles of orthogonality, using an appropriate blend of abstract and concrete examples and then discussing associated applications to enhance readers’ visualization of presented concepts Discusses linear operators, eigenvalues, and eigenvectors, and explores their use in matrix diagonalization and singular value decomposition Extends presented concepts to define matrix polynomials and compute functions using several well-known methods, such as Sylvester’s expansion and Cayley-Hamilton Introduces state space analysis and modeling techniques for discrete and continuous linear systems, and explores applications in control and electromechanical systems, to provide a complete solution for the state space equation Shows readers how to solve engineering problems using least square, weighted least square, and total least square techniques Offers a rich selection of exercises and MATLAB® assignments that build a platform to enhance readers’ understanding of the material Striking the appropriate balance between theory and real-life applications, this book provides both advanced students and professionals in the field with a valuable reference that they will continually consult.

Matrix Methods

Matrix Methods PDF Author: Richard Bronson
Publisher: Academic Press
ISBN: 0080922252
Category : Mathematics
Languages : en
Pages : 433

Get Book Here

Book Description
Matrix Methods: Applied Linear Algebra, Third Edition, as a textbook, provides a unique and comprehensive balance between the theory and computation of matrices. The application of matrices is not just for mathematicians. The use by other disciplines has grown dramatically over the years in response to the rapid changes in technology. Matrix methods is the essence of linear algebra and is what is used to help physical scientists; chemists, physicists, engineers, statisticians, and economists solve real world problems. - Applications like Markov chains, graph theory and Leontief Models are placed in early chapters - Readability- The prerequisite for most of the material is a firm understanding of algebra - New chapters on Linear Programming and Markov Chains - Appendix referencing the use of technology, with special emphasis on computer algebra systems (CAS) MATLAB