Applied Mathematics for Engineers and Physicists

Applied Mathematics for Engineers and Physicists PDF Author: Louis A. Pipes
Publisher: Courier Corporation
ISBN: 0486794997
Category : Mathematics
Languages : en
Pages : 1043

Get Book Here

Book Description
Suitable for advanced courses in applied mathematics, this text covers analysis of lumped parameter systems, distributed parameter systems, and important areas of applied mathematics. Answers to selected problems. 1970 edition.

Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering PDF Author: Kenneth Franklin Riley
Publisher:
ISBN:
Category :
Languages : en
Pages : 1008

Get Book Here

Book Description


Modern Mathematical Methods for Physicists and Engineers

Modern Mathematical Methods for Physicists and Engineers PDF Author: Cyrus D. Cantrell
Publisher: Cambridge University Press
ISBN: 9780521598279
Category : Science
Languages : en
Pages : 790

Get Book Here

Book Description
A mathematical and computational education for students, researchers, and practising engineers.

Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering PDF Author: Mattias Blennow
Publisher: CRC Press
ISBN: 1351676075
Category : Science
Languages : en
Pages : 749

Get Book Here

Book Description
Suitable for advanced undergraduate and graduate students, this new textbook contains an introduction to the mathematical concepts used in physics and engineering. The entire book is unique in that it draws upon applications from physics, rather than mathematical examples, to ensure students are fully equipped with the tools they need. This approach prepares the reader for advanced topics, such as quantum mechanics and general relativity, while offering examples, problems, and insights into classical physics. The book is also distinctive in the coverage it devotes to modelling, and to oft-neglected topics such as Green's functions.

Mathematical Methods for Physicists and Engineers

Mathematical Methods for Physicists and Engineers PDF Author: Royal Eugene Collins
Publisher: Courier Corporation
ISBN: 0486150127
Category : Science
Languages : en
Pages : 404

Get Book Here

Book Description
Practical text focuses on fundamental applied math needed to deal with physics and engineering problems: elementary vector calculus, special functions of mathematical physics, calculus of variations, much more. 1968 edition.

Advanced Mathematical Methods for Scientists and Engineers I

Advanced Mathematical Methods for Scientists and Engineers I PDF Author: Carl M. Bender
Publisher: Springer Science & Business Media
ISBN: 1475730691
Category : Mathematics
Languages : en
Pages : 605

Get Book Here

Book Description
A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.

Fundamentals of Numerical Mathematics for Physicists and Engineers

Fundamentals of Numerical Mathematics for Physicists and Engineers PDF Author: Alvaro Meseguer
Publisher: John Wiley & Sons
ISBN: 1119425670
Category : Mathematics
Languages : en
Pages : 400

Get Book Here

Book Description
Introduces the fundamentals of numerical mathematics and illustrates its applications to a wide variety of disciplines in physics and engineering Applying numerical mathematics to solve scientific problems, this book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain techniques for solving a given problem. It also contains examples related to problems arising in classical mechanics, thermodynamics, electricity, and quantum physics. Fundamentals of Numerical Mathematics for Physicists and Engineers is presented in two parts. Part I addresses the root finding of univariate transcendental equations, polynomial interpolation, numerical differentiation, and numerical integration. Part II examines slightly more advanced topics such as introductory numerical linear algebra, parameter dependent systems of nonlinear equations, numerical Fourier analysis, and ordinary differential equations (initial value problems and univariate boundary value problems). Chapters cover: Newton’s method, Lebesgue constants, conditioning, barycentric interpolatory formula, Clenshaw-Curtis quadrature, GMRES matrix-free Krylov linear solvers, homotopy (numerical continuation), differentiation matrices for boundary value problems, Runge-Kutta and linear multistep formulas for initial value problems. Each section concludes with Matlab hands-on computer practicals and problem and exercise sets. This book: Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section Fundamentals of Numerical Mathematics for Physicists and Engineers is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.

Mathematical Methods for Scientists and Engineers

Mathematical Methods for Scientists and Engineers PDF Author: Donald Allan McQuarrie
Publisher: University Science Books
ISBN: 9781891389245
Category : Mathematics
Languages : en
Pages : 1188

Get Book Here

Book Description
"Intended for upper-level undergraduate and graduate courses in chemistry, physics, math and engineering, this book will also become a must-have for the personal library of all advanced students in the physical sciences. Comprised of more than 2000 problems and 700 worked examples that detail every single step, this text is exceptionally well adapted for self study as well as for course use."--From publisher description.

Models of the Mind

Models of the Mind PDF Author: Grace Lindsay
Publisher: Bloomsbury Publishing
ISBN: 1472966457
Category : Science
Languages : en
Pages : 401

Get Book Here

Book Description
The human brain is made up of 85 billion neurons, which are connected by over 100 trillion synapses. For more than a century, a diverse array of researchers searched for a language that could be used to capture the essence of what these neurons do and how they communicate – and how those communications create thoughts, perceptions and actions. The language they were looking for was mathematics, and we would not be able to understand the brain as we do today without it. In Models of the Mind, author and computational neuroscientist Grace Lindsay explains how mathematical models have allowed scientists to understand and describe many of the brain's processes, including decision-making, sensory processing, quantifying memory, and more. She introduces readers to the most important concepts in modern neuroscience, and highlights the tensions that arise when the abstract world of mathematical modelling collides with the messy details of biology. Each chapter of Models of the Mind focuses on mathematical tools that have been applied in a particular area of neuroscience, progressing from the simplest building block of the brain – the individual neuron – through to circuits of interacting neurons, whole brain areas and even the behaviours that brains command. In addition, Grace examines the history of the field, starting with experiments done on frog legs in the late eighteenth century and building to the large models of artificial neural networks that form the basis of modern artificial intelligence. Throughout, she reveals the value of using the elegant language of mathematics to describe the machinery of neuroscience.

Mathematical Physics

Mathematical Physics PDF Author: Bruce R. Kusse
Publisher: John Wiley & Sons
ISBN: 3527618147
Category : Science
Languages : en
Pages : 689

Get Book Here

Book Description
What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations. The book moves on to explain complex topics that often fall through the cracks in undergraduate programs, including the Dirac delta-function, multivalued complex functions using branch cuts, branch points and Riemann sheets, contravariant and covariant tensors, and an introduction to group theory. This expanded second edition contains a new appendix on the calculus of variation -- a valuable addition to the already superb collection of topics on offer. This is an ideal text for upper-level undergraduates in physics, applied physics, physical chemistry, biophysics, and all areas of engineering. It allows physics professors to prepare students for a wide range of employment in science and engineering and makes an excellent reference for scientists and engineers in industry. Worked out examples appear throughout the book and exercises follow every chapter. Solutions to the odd-numbered exercises are available for lecturers at www.wiley-vch.de/textbooks/.