Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher:
ISBN: 9781470418380
Category : Quantum theory
Languages : en
Pages : 322
Book Description
Publisher:
ISBN: 9781470418380
Category : Quantum theory
Languages : en
Pages : 322
Book Description
Mathematical Concepts of Quantum Mechanics
Author: Stephen J. Gustafson
Publisher: Springer Nature
ISBN: 3030595625
Category : Mathematics
Languages : en
Pages : 453
Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include: many-body systems, modern perturbation theory, path integrals, the theory of resonances, adiabatic theory, geometrical phases, Aharonov-Bohm effect, density functional theory, open systems, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. Some of the sections could be used for introductions to geometrical methods in Quantum Mechanics, to quantum information theory and to quantum electrodynamics and quantum field theory.
Publisher: Springer Nature
ISBN: 3030595625
Category : Mathematics
Languages : en
Pages : 453
Book Description
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include: many-body systems, modern perturbation theory, path integrals, the theory of resonances, adiabatic theory, geometrical phases, Aharonov-Bohm effect, density functional theory, open systems, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. Some of the sections could be used for introductions to geometrical methods in Quantum Mechanics, to quantum information theory and to quantum electrodynamics and quantum field theory.
Mathematical Methods of Quantum Optics
Author: Ravinder R. Puri
Publisher: Springer
ISBN: 3540449531
Category : Science
Languages : en
Pages : 291
Book Description
Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.
Publisher: Springer
ISBN: 3540449531
Category : Science
Languages : en
Pages : 291
Book Description
Starting from first principles, this reference treats the theoretical aspects of quantum optics. It develops a unified approach for determining the dynamics of a two-level and three-level atom in combinations of quantized field under certain conditions.
Operator Methods in Quantum Mechanics
Author: Martin Schechter
Publisher: Courier Corporation
ISBN: 0486150046
Category : Science
Languages : en
Pages : 350
Book Description
This text introduces techniques related to physical theory. Entire book is devoted to a particle moving in a straight line; students develop techniques by answering questions about the particle. 1981 edition.
Publisher: Courier Corporation
ISBN: 0486150046
Category : Science
Languages : en
Pages : 350
Book Description
This text introduces techniques related to physical theory. Entire book is devoted to a particle moving in a straight line; students develop techniques by answering questions about the particle. 1981 edition.
Mathematics of Classical and Quantum Physics
Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
Publisher: Courier Corporation
ISBN: 0486135063
Category : Science
Languages : en
Pages : 674
Book Description
Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.
A Mathematical Primer on Quantum Mechanics
Author: Alessandro Teta
Publisher: Springer
ISBN: 3319778935
Category : Science
Languages : en
Pages : 265
Book Description
This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress.
Publisher: Springer
ISBN: 3319778935
Category : Science
Languages : en
Pages : 265
Book Description
This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress.
Mathematical Methods of Classical Mechanics
Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 1475720637
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Publisher: Springer Science & Business Media
ISBN: 1475720637
Category : Mathematics
Languages : en
Pages : 530
Book Description
This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.
Mathematical Methods In Classical And Quantum Physics
Author: Tulsi Dass
Publisher: Universities Press
ISBN: 9788173710896
Category : Mathematical physics
Languages : en
Pages : 718
Book Description
This book is intended to provide an adequate background for various theortical physics courses, especially those in classical mechanics, electrodynamics, quatum mechanics and statistical physics. Each topic is dealt with in a generally self-contained manner and the text is interspersed with a number of solved examples ad a large number of exercise problems.
Publisher: Universities Press
ISBN: 9788173710896
Category : Mathematical physics
Languages : en
Pages : 718
Book Description
This book is intended to provide an adequate background for various theortical physics courses, especially those in classical mechanics, electrodynamics, quatum mechanics and statistical physics. Each topic is dealt with in a generally self-contained manner and the text is interspersed with a number of solved examples ad a large number of exercise problems.
Mathematical Methods and Quantum Mathematics for Economics and Finance
Author: Belal Ehsan Baaquie
Publisher: Springer Nature
ISBN: 9811566119
Category : Business & Economics
Languages : en
Pages : 439
Book Description
Given the rapid pace of development in economics and finance, a concise and up-to-date introduction to mathematical methods has become a prerequisite for all graduate students, even those not specializing in quantitative finance. This book offers an introductory text on mathematical methods for graduate students of economics and finance–and leading to the more advanced subject of quantum mathematics. The content is divided into five major sections: mathematical methods are covered in the first four sections, and can be taught in one semester. The book begins by focusing on the core subjects of linear algebra and calculus, before moving on to the more advanced topics of probability theory and stochastic calculus. Detailed derivations of the Black-Scholes and Merton equations are provided – in order to clarify the mathematical underpinnings of stochastic calculus. Each chapter of the first four sections includes a problem set, chiefly drawn from economics and finance. In turn, section five addresses quantum mathematics. The mathematical topics covered in the first four sections are sufficient for the study of quantum mathematics; Black-Scholes option theory and Merton’s theory of corporate debt are among topics analyzed using quantum mathematics.
Publisher: Springer Nature
ISBN: 9811566119
Category : Business & Economics
Languages : en
Pages : 439
Book Description
Given the rapid pace of development in economics and finance, a concise and up-to-date introduction to mathematical methods has become a prerequisite for all graduate students, even those not specializing in quantitative finance. This book offers an introductory text on mathematical methods for graduate students of economics and finance–and leading to the more advanced subject of quantum mathematics. The content is divided into five major sections: mathematical methods are covered in the first four sections, and can be taught in one semester. The book begins by focusing on the core subjects of linear algebra and calculus, before moving on to the more advanced topics of probability theory and stochastic calculus. Detailed derivations of the Black-Scholes and Merton equations are provided – in order to clarify the mathematical underpinnings of stochastic calculus. Each chapter of the first four sections includes a problem set, chiefly drawn from economics and finance. In turn, section five addresses quantum mathematics. The mathematical topics covered in the first four sections are sufficient for the study of quantum mathematics; Black-Scholes option theory and Merton’s theory of corporate debt are among topics analyzed using quantum mathematics.