Author: Andrey Sarychev
Publisher: Springer Science & Business Media
ISBN: 354069532X
Category : Mathematics
Languages : en
Pages : 418
Book Description
Control theory provides a large set of theoretical and computational tools with applications in a wide range of ?elds, running from ”pure” branches of mathematics, like geometry, to more applied areas where the objective is to ?nd solutions to ”real life” problems, as is the case in robotics, control of industrial processes or ?nance. The ”high tech” character of modern business has increased the need for advanced methods. These rely heavily on mathematical techniques and seem indispensable for competitiveness of modern enterprises. It became essential for the ?nancial analyst to possess a high level of mathematical skills. C- versely, the complex challenges posed by the problems and models relevant to ?nance have, for a long time, been an important source of new research topics for mathematicians. The use of techniques from stochastic optimal control constitutes a well established and important branch of mathematical ?nance. Up to now, other branches of control theory have found comparatively less application in ?n- cial problems. To some extent, deterministic and stochastic control theories developed as di?erent branches of mathematics. However, there are many points of contact between them and in recent years the exchange of ideas between these ?elds has intensi?ed. Some concepts from stochastic calculus (e.g., rough paths) havedrawntheattentionofthedeterministiccontroltheorycommunity.Also, some ideas and tools usual in deterministic control (e.g., geometric, algebraic or functional-analytic methods) can be successfully applied to stochastic c- trol.
Mathematical Control Theory and Finance
Author: Andrey Sarychev
Publisher: Springer Science & Business Media
ISBN: 354069532X
Category : Mathematics
Languages : en
Pages : 418
Book Description
Control theory provides a large set of theoretical and computational tools with applications in a wide range of ?elds, running from ”pure” branches of mathematics, like geometry, to more applied areas where the objective is to ?nd solutions to ”real life” problems, as is the case in robotics, control of industrial processes or ?nance. The ”high tech” character of modern business has increased the need for advanced methods. These rely heavily on mathematical techniques and seem indispensable for competitiveness of modern enterprises. It became essential for the ?nancial analyst to possess a high level of mathematical skills. C- versely, the complex challenges posed by the problems and models relevant to ?nance have, for a long time, been an important source of new research topics for mathematicians. The use of techniques from stochastic optimal control constitutes a well established and important branch of mathematical ?nance. Up to now, other branches of control theory have found comparatively less application in ?n- cial problems. To some extent, deterministic and stochastic control theories developed as di?erent branches of mathematics. However, there are many points of contact between them and in recent years the exchange of ideas between these ?elds has intensi?ed. Some concepts from stochastic calculus (e.g., rough paths) havedrawntheattentionofthedeterministiccontroltheorycommunity.Also, some ideas and tools usual in deterministic control (e.g., geometric, algebraic or functional-analytic methods) can be successfully applied to stochastic c- trol.
Publisher: Springer Science & Business Media
ISBN: 354069532X
Category : Mathematics
Languages : en
Pages : 418
Book Description
Control theory provides a large set of theoretical and computational tools with applications in a wide range of ?elds, running from ”pure” branches of mathematics, like geometry, to more applied areas where the objective is to ?nd solutions to ”real life” problems, as is the case in robotics, control of industrial processes or ?nance. The ”high tech” character of modern business has increased the need for advanced methods. These rely heavily on mathematical techniques and seem indispensable for competitiveness of modern enterprises. It became essential for the ?nancial analyst to possess a high level of mathematical skills. C- versely, the complex challenges posed by the problems and models relevant to ?nance have, for a long time, been an important source of new research topics for mathematicians. The use of techniques from stochastic optimal control constitutes a well established and important branch of mathematical ?nance. Up to now, other branches of control theory have found comparatively less application in ?n- cial problems. To some extent, deterministic and stochastic control theories developed as di?erent branches of mathematics. However, there are many points of contact between them and in recent years the exchange of ideas between these ?elds has intensi?ed. Some concepts from stochastic calculus (e.g., rough paths) havedrawntheattentionofthedeterministiccontroltheorycommunity.Also, some ideas and tools usual in deterministic control (e.g., geometric, algebraic or functional-analytic methods) can be successfully applied to stochastic c- trol.
Mathematical Control Theory
Author: Jerzy Zabczyk
Publisher: Springer Science & Business Media
ISBN: 9780817647322
Category : Language Arts & Disciplines
Languages : en
Pages : 276
Book Description
In a mathematically precise manner, this book presents a unified introduction to deterministic control theory. It includes material on the realization of both linear and nonlinear systems, impulsive control, and positive linear systems.
Publisher: Springer Science & Business Media
ISBN: 9780817647322
Category : Language Arts & Disciplines
Languages : en
Pages : 276
Book Description
In a mathematically precise manner, this book presents a unified introduction to deterministic control theory. It includes material on the realization of both linear and nonlinear systems, impulsive control, and positive linear systems.
Time-Inconsistent Control Theory with Finance Applications
Author: Tomas Björk
Publisher: Springer Nature
ISBN: 3030818438
Category : Mathematics
Languages : en
Pages : 328
Book Description
This book is devoted to problems of stochastic control and stopping that are time inconsistent in the sense that they do not admit a Bellman optimality principle. These problems are cast in a game-theoretic framework, with the focus on subgame-perfect Nash equilibrium strategies. The general theory is illustrated with a number of finance applications. In dynamic choice problems, time inconsistency is the rule rather than the exception. Indeed, as Robert H. Strotz pointed out in his seminal 1955 paper, relaxing the widely used ad hoc assumption of exponential discounting gives rise to time inconsistency. Other famous examples of time inconsistency include mean-variance portfolio choice and prospect theory in a dynamic context. For such models, the very concept of optimality becomes problematic, as the decision maker’s preferences change over time in a temporally inconsistent way. In this book, a time-inconsistent problem is viewed as a non-cooperative game between the agent’s current and future selves, with the objective of finding intrapersonal equilibria in the game-theoretic sense. A range of finance applications are provided, including problems with non-exponential discounting, mean-variance objective, time-inconsistent linear quadratic regulator, probability distortion, and market equilibrium with time-inconsistent preferences. Time-Inconsistent Control Theory with Finance Applications offers the first comprehensive treatment of time-inconsistent control and stopping problems, in both continuous and discrete time, and in the context of finance applications. Intended for researchers and graduate students in the fields of finance and economics, it includes a review of the standard time-consistent results, bibliographical notes, as well as detailed examples showcasing time inconsistency problems. For the reader unacquainted with standard arbitrage theory, an appendix provides a toolbox of material needed for the book.
Publisher: Springer Nature
ISBN: 3030818438
Category : Mathematics
Languages : en
Pages : 328
Book Description
This book is devoted to problems of stochastic control and stopping that are time inconsistent in the sense that they do not admit a Bellman optimality principle. These problems are cast in a game-theoretic framework, with the focus on subgame-perfect Nash equilibrium strategies. The general theory is illustrated with a number of finance applications. In dynamic choice problems, time inconsistency is the rule rather than the exception. Indeed, as Robert H. Strotz pointed out in his seminal 1955 paper, relaxing the widely used ad hoc assumption of exponential discounting gives rise to time inconsistency. Other famous examples of time inconsistency include mean-variance portfolio choice and prospect theory in a dynamic context. For such models, the very concept of optimality becomes problematic, as the decision maker’s preferences change over time in a temporally inconsistent way. In this book, a time-inconsistent problem is viewed as a non-cooperative game between the agent’s current and future selves, with the objective of finding intrapersonal equilibria in the game-theoretic sense. A range of finance applications are provided, including problems with non-exponential discounting, mean-variance objective, time-inconsistent linear quadratic regulator, probability distortion, and market equilibrium with time-inconsistent preferences. Time-Inconsistent Control Theory with Finance Applications offers the first comprehensive treatment of time-inconsistent control and stopping problems, in both continuous and discrete time, and in the context of finance applications. Intended for researchers and graduate students in the fields of finance and economics, it includes a review of the standard time-consistent results, bibliographical notes, as well as detailed examples showcasing time inconsistency problems. For the reader unacquainted with standard arbitrage theory, an appendix provides a toolbox of material needed for the book.
Introduction to the Mathematical Theory of Control
Author: Alberto Bressan
Publisher:
ISBN:
Category : Control theory
Languages : en
Pages : 336
Book Description
Publisher:
ISBN:
Category : Control theory
Languages : en
Pages : 336
Book Description
Introduction to Mathematical Control Theory
Author: Stephen Barnett
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 424
Book Description
In this new edition of a successful text, Professor Barnett, now joined in the authorship by Dr. Cameron, has concentrated on adding material where topics have developed since the first edition, and they have also taken advantage of the extensive classroom testing that has been possible in the intervening years. The book remains the concise readable account of some basic mathematical aspects of control, concentrating on state-space methods and emphasizing points of mathematical interest. As far as the additional material is concerned, the new chapter on multivariable theory reflects some of the significant developments in that field during the past decade, and there is also now an appendix on Kalman filtering. All references have been updated and a large number of new problems for student use have been incorporated.
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 424
Book Description
In this new edition of a successful text, Professor Barnett, now joined in the authorship by Dr. Cameron, has concentrated on adding material where topics have developed since the first edition, and they have also taken advantage of the extensive classroom testing that has been possible in the intervening years. The book remains the concise readable account of some basic mathematical aspects of control, concentrating on state-space methods and emphasizing points of mathematical interest. As far as the additional material is concerned, the new chapter on multivariable theory reflects some of the significant developments in that field during the past decade, and there is also now an appendix on Kalman filtering. All references have been updated and a large number of new problems for student use have been incorporated.
Mathematical Systems Theory in Biology, Communications, Computation and Finance
Author: Joachim Rosenthal
Publisher: Springer Science & Business Media
ISBN: 9780387403199
Category : Science
Languages : en
Pages : 528
Book Description
This volume contains survey and research articles by some of the leading researchers in mathematical systems theory - a vibrant research area in its own right. Many authors have taken special care that their articles are self-contained and accessible also to non-specialists.
Publisher: Springer Science & Business Media
ISBN: 9780387403199
Category : Science
Languages : en
Pages : 528
Book Description
This volume contains survey and research articles by some of the leading researchers in mathematical systems theory - a vibrant research area in its own right. Many authors have taken special care that their articles are self-contained and accessible also to non-specialists.
Mathematical Finance
Author: Ernst Eberlein
Publisher: Springer Nature
ISBN: 3030261069
Category : Mathematics
Languages : en
Pages : 774
Book Description
Taking continuous-time stochastic processes allowing for jumps as its starting and focal point, this book provides an accessible introduction to the stochastic calculus and control of semimartingales and explains the basic concepts of Mathematical Finance such as arbitrage theory, hedging, valuation principles, portfolio choice, and term structure modelling. It bridges thegap between introductory texts and the advanced literature in the field. Most textbooks on the subject are limited to diffusion-type models which cannot easily account for sudden price movements. Such abrupt changes, however, can often be observed in real markets. At the same time, purely discontinuous processes lead to a much wider variety of flexible and tractable models. This explains why processes with jumps have become an established tool in the statistics and mathematics of finance. Graduate students, researchers as well as practitioners will benefit from this monograph.
Publisher: Springer Nature
ISBN: 3030261069
Category : Mathematics
Languages : en
Pages : 774
Book Description
Taking continuous-time stochastic processes allowing for jumps as its starting and focal point, this book provides an accessible introduction to the stochastic calculus and control of semimartingales and explains the basic concepts of Mathematical Finance such as arbitrage theory, hedging, valuation principles, portfolio choice, and term structure modelling. It bridges thegap between introductory texts and the advanced literature in the field. Most textbooks on the subject are limited to diffusion-type models which cannot easily account for sudden price movements. Such abrupt changes, however, can often be observed in real markets. At the same time, purely discontinuous processes lead to a much wider variety of flexible and tractable models. This explains why processes with jumps have become an established tool in the statistics and mathematics of finance. Graduate students, researchers as well as practitioners will benefit from this monograph.
Methods of Mathematical Finance
Author: Ioannis Karatzas
Publisher: Springer Science & Business Media
ISBN: 0387948392
Category : Business & Economics
Languages : en
Pages : 427
Book Description
This monograph is a sequel to Brownian Motion and Stochastic Calculus by the same authors. Within the context of Brownian-motion- driven asset prices, it develops contingent claim pricing and optimal consumption/investment in both complete and incomplete markets. The latter topic is extended to a study of equilibrium, providing conditions for the existence and uniqueness of market prices which support trading by several heterogeneous agents. Although much of the incomplete-market material is available in research papers, these topics are treated for the first time in a unified manner. The book contains an extensive set of references and notes describing the field, including topics not treated in the text. This monograph should be of interest to researchers wishing to see advanced mathematics applied to finance. The material on optimal consumption and investment, leading to equilibrium, is addressed to the theoretical finance community. The chapters on contingent claim valuation present techniques of practical importance, especially for pricing exotic options. Also available by Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer-Verlag New York, Inc., 1991, 470 pp., ISBN 0-387- 97655-8.
Publisher: Springer Science & Business Media
ISBN: 0387948392
Category : Business & Economics
Languages : en
Pages : 427
Book Description
This monograph is a sequel to Brownian Motion and Stochastic Calculus by the same authors. Within the context of Brownian-motion- driven asset prices, it develops contingent claim pricing and optimal consumption/investment in both complete and incomplete markets. The latter topic is extended to a study of equilibrium, providing conditions for the existence and uniqueness of market prices which support trading by several heterogeneous agents. Although much of the incomplete-market material is available in research papers, these topics are treated for the first time in a unified manner. The book contains an extensive set of references and notes describing the field, including topics not treated in the text. This monograph should be of interest to researchers wishing to see advanced mathematics applied to finance. The material on optimal consumption and investment, leading to equilibrium, is addressed to the theoretical finance community. The chapters on contingent claim valuation present techniques of practical importance, especially for pricing exotic options. Also available by Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, Second Edition, Springer-Verlag New York, Inc., 1991, 470 pp., ISBN 0-387- 97655-8.
A Primer on the Calculus of Variations and Optimal Control Theory
Author: Mike Mesterton-Gibbons
Publisher: American Mathematical Soc.
ISBN: 0821847724
Category : Mathematics
Languages : en
Pages : 274
Book Description
The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory.
Publisher: American Mathematical Soc.
ISBN: 0821847724
Category : Mathematics
Languages : en
Pages : 274
Book Description
The calculus of variations is used to find functions that optimize quantities expressed in terms of integrals. Optimal control theory seeks to find functions that minimize cost integrals for systems described by differential equations. This book is an introduction to both the classical theory of the calculus of variations and the more modern developments of optimal control theory from the perspective of an applied mathematician. It focuses on understanding concepts and how to apply them. The range of potential applications is broad: the calculus of variations and optimal control theory have been widely used in numerous ways in biology, criminology, economics, engineering, finance, management science, and physics. Applications described in this book include cancer chemotherapy, navigational control, and renewable resource harvesting. The prerequisites for the book are modest: the standard calculus sequence, a first course on ordinary differential equations, and some facility with the use of mathematical software. It is suitable for an undergraduate or beginning graduate course, or for self study. It provides excellent preparation for more advanced books and courses on the calculus of variations and optimal control theory.
Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications
Author: Rene Carmona
Publisher: SIAM
ISBN: 1611974240
Category : Mathematics
Languages : en
Pages : 263
Book Description
The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.
Publisher: SIAM
ISBN: 1611974240
Category : Mathematics
Languages : en
Pages : 263
Book Description
The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.