Author: Subrata Pal
Publisher: Elsevier
ISBN: 032390663X
Category : Science
Languages : en
Pages : 311
Book Description
Mathematical Approaches to Molecular Structural Biology offers a comprehensive overview of the mathematical foundations behind the study of biomolecular structure. Initial chapters provide an introduction to the mathematics associated with the study of molecular structure, such as vector spaces and matrices, linear systems, matrix decomposition, vector calculus, probability and statistics. The book then moves on to more advanced areas of molecular structural biology based on the mathematical concepts discussed in earlier chapters. Here, key methods such as X-ray crystallography and cryo-electron microscopy are explored, in addition to biomolecular structure dynamics within the context of mathematics and physics. This book equips readers with an understanding of the fundamental principles behind structural biology, providing researchers with a strong groundwork for further investigation in both this and related fields. - Includes a detailed introduction to key mathematical principles and their application to molecular structural biology - Explores the mathematical underpinnings behind advanced techniques such as X-ray crystallography and Cryo-electron microscopy - Features step-by-step protocols that illustrate mathematical and statistical principles for studying molecular structure and dynamics - Provides a basis for further investigation into the field of computational molecular biology - Includes figures and graphs throughout to visually demonstrate the concepts discussed
Mathematical Approaches to Molecular Structural Biology
Author: Subrata Pal
Publisher: Elsevier
ISBN: 032390663X
Category : Science
Languages : en
Pages : 311
Book Description
Mathematical Approaches to Molecular Structural Biology offers a comprehensive overview of the mathematical foundations behind the study of biomolecular structure. Initial chapters provide an introduction to the mathematics associated with the study of molecular structure, such as vector spaces and matrices, linear systems, matrix decomposition, vector calculus, probability and statistics. The book then moves on to more advanced areas of molecular structural biology based on the mathematical concepts discussed in earlier chapters. Here, key methods such as X-ray crystallography and cryo-electron microscopy are explored, in addition to biomolecular structure dynamics within the context of mathematics and physics. This book equips readers with an understanding of the fundamental principles behind structural biology, providing researchers with a strong groundwork for further investigation in both this and related fields. - Includes a detailed introduction to key mathematical principles and their application to molecular structural biology - Explores the mathematical underpinnings behind advanced techniques such as X-ray crystallography and Cryo-electron microscopy - Features step-by-step protocols that illustrate mathematical and statistical principles for studying molecular structure and dynamics - Provides a basis for further investigation into the field of computational molecular biology - Includes figures and graphs throughout to visually demonstrate the concepts discussed
Publisher: Elsevier
ISBN: 032390663X
Category : Science
Languages : en
Pages : 311
Book Description
Mathematical Approaches to Molecular Structural Biology offers a comprehensive overview of the mathematical foundations behind the study of biomolecular structure. Initial chapters provide an introduction to the mathematics associated with the study of molecular structure, such as vector spaces and matrices, linear systems, matrix decomposition, vector calculus, probability and statistics. The book then moves on to more advanced areas of molecular structural biology based on the mathematical concepts discussed in earlier chapters. Here, key methods such as X-ray crystallography and cryo-electron microscopy are explored, in addition to biomolecular structure dynamics within the context of mathematics and physics. This book equips readers with an understanding of the fundamental principles behind structural biology, providing researchers with a strong groundwork for further investigation in both this and related fields. - Includes a detailed introduction to key mathematical principles and their application to molecular structural biology - Explores the mathematical underpinnings behind advanced techniques such as X-ray crystallography and Cryo-electron microscopy - Features step-by-step protocols that illustrate mathematical and statistical principles for studying molecular structure and dynamics - Provides a basis for further investigation into the field of computational molecular biology - Includes figures and graphs throughout to visually demonstrate the concepts discussed
Fundamentals of Molecular Structural Biology
Author: Subrata Pal
Publisher: Academic Press
ISBN: 0128148551
Category : Science
Languages : en
Pages : 518
Book Description
Fundamentals of Molecular Structural Biology reviews the mathematical and physical foundations of molecular structural biology. Based on these fundamental concepts, it then describes molecular structure and explains basic genetic mechanisms. Given the increasingly interdisciplinary nature of research, early career researchers and those shifting into an adjacent field often require a "fundamentals" book to get them up-to-speed on the foundations of a particular field. This book fills that niche.
Publisher: Academic Press
ISBN: 0128148551
Category : Science
Languages : en
Pages : 518
Book Description
Fundamentals of Molecular Structural Biology reviews the mathematical and physical foundations of molecular structural biology. Based on these fundamental concepts, it then describes molecular structure and explains basic genetic mechanisms. Given the increasingly interdisciplinary nature of research, early career researchers and those shifting into an adjacent field often require a "fundamentals" book to get them up-to-speed on the foundations of a particular field. This book fills that niche.
Algorithms in Structural Molecular Biology
Author: Bruce R. Donald
Publisher: MIT Press
ISBN: 0262548798
Category : Science
Languages : en
Pages : 497
Book Description
An overview of algorithms important to computational structural biology that addresses such topics as NMR and design and analysis of proteins.Using the tools of information technology to understand the molecular machinery of the cell offers both challenges and opportunities to computational scientists. Over the past decade, novel algorithms have been developed both for analyzing biological data and for synthetic biology problems such as protein engineering. This book explains the algorithmic foundations and computational approaches underlying areas of structural biology including NMR (nuclear magnetic resonance); X-ray crystallography; and the design and analysis of proteins, peptides, and small molecules. Each chapter offers a concise overview of important concepts, focusing on a key topic in the field. Four chapters offer a short course in algorithmic and computational issues related to NMR structural biology, giving the reader a useful toolkit with which to approach the fascinating yet thorny computational problems in this area. A recurrent theme is understanding the interplay between biophysical experiments and computational algorithms. The text emphasizes the mathematical foundations of structural biology while maintaining a balance between algorithms and a nuanced understanding of experimental data. Three emerging areas, particularly fertile ground for research students, are highlighted: NMR methodology, design of proteins and other molecules, and the modeling of protein flexibility. The next generation of computational structural biologists will need training in geometric algorithms, provably good approximation algorithms, scientific computation, and an array of techniques for handling noise and uncertainty in combinatorial geometry and computational biophysics. This book is an essential guide for young scientists on their way to research success in this exciting field.
Publisher: MIT Press
ISBN: 0262548798
Category : Science
Languages : en
Pages : 497
Book Description
An overview of algorithms important to computational structural biology that addresses such topics as NMR and design and analysis of proteins.Using the tools of information technology to understand the molecular machinery of the cell offers both challenges and opportunities to computational scientists. Over the past decade, novel algorithms have been developed both for analyzing biological data and for synthetic biology problems such as protein engineering. This book explains the algorithmic foundations and computational approaches underlying areas of structural biology including NMR (nuclear magnetic resonance); X-ray crystallography; and the design and analysis of proteins, peptides, and small molecules. Each chapter offers a concise overview of important concepts, focusing on a key topic in the field. Four chapters offer a short course in algorithmic and computational issues related to NMR structural biology, giving the reader a useful toolkit with which to approach the fascinating yet thorny computational problems in this area. A recurrent theme is understanding the interplay between biophysical experiments and computational algorithms. The text emphasizes the mathematical foundations of structural biology while maintaining a balance between algorithms and a nuanced understanding of experimental data. Three emerging areas, particularly fertile ground for research students, are highlighted: NMR methodology, design of proteins and other molecules, and the modeling of protein flexibility. The next generation of computational structural biologists will need training in geometric algorithms, provably good approximation algorithms, scientific computation, and an array of techniques for handling noise and uncertainty in combinatorial geometry and computational biophysics. This book is an essential guide for young scientists on their way to research success in this exciting field.
Mathematical Methods for Protein Structure Analysis and Design
Author: Concettina Guerra
Publisher: Springer Science & Business Media
ISBN: 3540401040
Category : Mathematics
Languages : en
Pages : 161
Book Description
The papers collected in this volume reproduce contributions by leading sch- arstoaninternationalschoolandworkshopwhichwasorganizedandheldwith thegoaloftakinga snapshotofadiscipline undertumultuous growth. Indeed, the area of protein folding, docking and alignment is developing in response to needs for a mix of heterogeneous expertise spanning biology, chemistry, mathematics, computer science, and statistics, among others. Some of the problems encountered in this area are not only important for the scienti?c challenges they pose, but also for the opportunities they disclose intermsofmedicalandindustrialexploitation. Atypicalexampleiso?eredby protein-drug interaction (docking), a problem posing daunting computational problems at the crossroads of geometry, physics and chemistry, and, at the same time, a problem with unimaginable implications for the pharmacopoeia of the future. The schoolfocused on problems posed by the study of the mechanisms - hind protein folding, and explored di?erent ways of attacking these problems under objective evaluations of the methods. Together with a relatively small core of consolidated knowledge and tools, important re?ections were brought to this e?ort by studies in a multitude of directions and approaches. It is obviously impossible to predict which, if any, among these techniques will prove completely successful, but it is precisely the implicit dialectic among them that best conveys the current ?avor of the ?eld. Such unique diversity and richness inspired the format of the meeting, and also explains the slight departure of the present volume from the typical format in this series: the exposition of the current sediment is complemented here by a selection of quali?ed specialized contributions.
Publisher: Springer Science & Business Media
ISBN: 3540401040
Category : Mathematics
Languages : en
Pages : 161
Book Description
The papers collected in this volume reproduce contributions by leading sch- arstoaninternationalschoolandworkshopwhichwasorganizedandheldwith thegoaloftakinga snapshotofadiscipline undertumultuous growth. Indeed, the area of protein folding, docking and alignment is developing in response to needs for a mix of heterogeneous expertise spanning biology, chemistry, mathematics, computer science, and statistics, among others. Some of the problems encountered in this area are not only important for the scienti?c challenges they pose, but also for the opportunities they disclose intermsofmedicalandindustrialexploitation. Atypicalexampleiso?eredby protein-drug interaction (docking), a problem posing daunting computational problems at the crossroads of geometry, physics and chemistry, and, at the same time, a problem with unimaginable implications for the pharmacopoeia of the future. The schoolfocused on problems posed by the study of the mechanisms - hind protein folding, and explored di?erent ways of attacking these problems under objective evaluations of the methods. Together with a relatively small core of consolidated knowledge and tools, important re?ections were brought to this e?ort by studies in a multitude of directions and approaches. It is obviously impossible to predict which, if any, among these techniques will prove completely successful, but it is precisely the implicit dialectic among them that best conveys the current ?avor of the ?eld. Such unique diversity and richness inspired the format of the meeting, and also explains the slight departure of the present volume from the typical format in this series: the exposition of the current sediment is complemented here by a selection of quali?ed specialized contributions.
Mathematical Approaches to Biomolecular Structure and Dynamics
Author: Jill P. Mesirov
Publisher: Springer Science & Business Media
ISBN: 1461240662
Category : Science
Languages : en
Pages : 258
Book Description
This IMA Volume in Mathematics and its Applications MATHEMATICAL APPROACHES TO BIOMOLECULAR STRUCTURE AND DYNAMICS is one of the two volumes based on the proceedings of the 1994 IMA Sum mer Program on "Molecular Biology" and comprises Weeks 3 and 4 of the four-week program. Weeks 1 and 2 appeared as Volume 81: Genetic Mapping and DNA Sequencing. We thank Jill P. Mesirov, Klaus Schulten, and De Witt Sumners for organizing Weeks 3 and 4 of the workshop and for editing the proceedings. We also take this opportunity to thank the National Institutes of Health (NIH) (National Center for Human Genome Research), the National Science Foundation (NSF) (Biological Instrumen tation and Resources), and the Department of Energy (DOE), whose fi nancial support made the summer program possible. A vner Friedman Robert Gulliver v PREFACE The revolutionary progress in molecular biology within the last 30 years opens the way to full understanding of the molecular structures and mech anisms of living organisms. Interdisciplinary research in mathematics and molecular biology is driven by ever growing experimental, theoretical and computational power. The mathematical sciences accompany and support much of the progress achieved by experiment and computation as well as provide insight into geometric and topological properties of biomolecular structure and processes. This volume consists of a representative sample of the papers presented during the last two weeks of the month-long Institute for Mathematics and Its Applications Summer 1994 Program in Molecular Biology.
Publisher: Springer Science & Business Media
ISBN: 1461240662
Category : Science
Languages : en
Pages : 258
Book Description
This IMA Volume in Mathematics and its Applications MATHEMATICAL APPROACHES TO BIOMOLECULAR STRUCTURE AND DYNAMICS is one of the two volumes based on the proceedings of the 1994 IMA Sum mer Program on "Molecular Biology" and comprises Weeks 3 and 4 of the four-week program. Weeks 1 and 2 appeared as Volume 81: Genetic Mapping and DNA Sequencing. We thank Jill P. Mesirov, Klaus Schulten, and De Witt Sumners for organizing Weeks 3 and 4 of the workshop and for editing the proceedings. We also take this opportunity to thank the National Institutes of Health (NIH) (National Center for Human Genome Research), the National Science Foundation (NSF) (Biological Instrumen tation and Resources), and the Department of Energy (DOE), whose fi nancial support made the summer program possible. A vner Friedman Robert Gulliver v PREFACE The revolutionary progress in molecular biology within the last 30 years opens the way to full understanding of the molecular structures and mech anisms of living organisms. Interdisciplinary research in mathematics and molecular biology is driven by ever growing experimental, theoretical and computational power. The mathematical sciences accompany and support much of the progress achieved by experiment and computation as well as provide insight into geometric and topological properties of biomolecular structure and processes. This volume consists of a representative sample of the papers presented during the last two weeks of the month-long Institute for Mathematics and Its Applications Summer 1994 Program in Molecular Biology.
Symmetrical Analysis Techniques for Genetic Systems and Bioinformatics: Advanced Patterns and Applications
Author: Petoukhov, Sergey
Publisher: IGI Global
ISBN: 1605661252
Category : Computers
Languages : en
Pages : 289
Book Description
"This book compiles studies that demonstrate effective approaches to the structural analysis of genetic systems and bioinformatics"--Provided by publisher.
Publisher: IGI Global
ISBN: 1605661252
Category : Computers
Languages : en
Pages : 289
Book Description
"This book compiles studies that demonstrate effective approaches to the structural analysis of genetic systems and bioinformatics"--Provided by publisher.
Structural Biology Using Electrons and X-rays
Author: Michael F Moody
Publisher: Academic Press
ISBN: 0080919456
Category : Science
Languages : en
Pages : 451
Book Description
Structural Biology Using Electrons and X-Rays discusses the diffraction and image-based methods used for the determination of complex biological macromolecules. The book focuses on the Fourier transform theory, which is a mathematical function that is computed to transform signals between time and frequency domain. Composed of five parts, the book examines the development of nuclear magnetic resonance (NMR), which allows the calculation of the images of a certain protein. Parts 1 to 4 provide the basic information and the applications of Fourier transforms, as well as the different methods used for image processing using X-ray crystallography and the analysis of electron micrographs. Part 5 focuses entirely on the mathematical aspect of Fourier transforms. In addition, the book examines detailed structural analyses of a specimen's symmetry (i.e., crystals, helices, polyhedral viruses and asymmetrical particles). This book is intended for the biologist or biochemist who is interested in different methods and techniques for calculating the images of proteins using nuclear magnetic resonance (NMR). It is also suitable for readers without a background in physical chemistry or mathematics. - Emphasis on common principles underlying all diffraction-based methods - Thorough grounding in theory requires understanding of only simple algebra - Visual representations and explanations of challenging content - Mathematical detail offered in short-course form to parallel the text
Publisher: Academic Press
ISBN: 0080919456
Category : Science
Languages : en
Pages : 451
Book Description
Structural Biology Using Electrons and X-Rays discusses the diffraction and image-based methods used for the determination of complex biological macromolecules. The book focuses on the Fourier transform theory, which is a mathematical function that is computed to transform signals between time and frequency domain. Composed of five parts, the book examines the development of nuclear magnetic resonance (NMR), which allows the calculation of the images of a certain protein. Parts 1 to 4 provide the basic information and the applications of Fourier transforms, as well as the different methods used for image processing using X-ray crystallography and the analysis of electron micrographs. Part 5 focuses entirely on the mathematical aspect of Fourier transforms. In addition, the book examines detailed structural analyses of a specimen's symmetry (i.e., crystals, helices, polyhedral viruses and asymmetrical particles). This book is intended for the biologist or biochemist who is interested in different methods and techniques for calculating the images of proteins using nuclear magnetic resonance (NMR). It is also suitable for readers without a background in physical chemistry or mathematics. - Emphasis on common principles underlying all diffraction-based methods - Thorough grounding in theory requires understanding of only simple algebra - Visual representations and explanations of challenging content - Mathematical detail offered in short-course form to parallel the text
Entropy and Free Energy in Structural Biology
Author: Hagai Meirovitch
Publisher: CRC Press
ISBN: 1000072320
Category : Computers
Languages : en
Pages : 428
Book Description
Nuclear Structure Physics connects to some of our fundamental questions about the creation of the universe and its basic constituents. At the same time, precise knowledge on the subject has led to the development of many important tools for humankind such as proton therapy and radioactive dating, among others. This book has chapters on some of the crucial and trending research topics in nuclear structure, including the nuclei lying on the extremes of spin, isospin and mass. A better theoretical understanding of these topics is important beyond the confines of the nuclear structure community. Additionally, the book will showcase the applicability and success of the different nuclear effective interaction parameters near the drip line, where hints for level reordering have already been seen, and where one can test the isospin-dependence of the interaction. The book offers comprehensive coverage of the most essential topics, including: • Nuclear Structure of Nuclei at or Near Drip-Lines • Synthesis challenges and properties of Superheavy nuclei • Nuclear Structure and Nuclear models - Ab-initio calculations, cluster models, Shell-model/DSM, RMF, Skyrme • Shell Closure, Magicity and other novel features of nuclei at extremes • Structure of Toroidal, Bubble Nuclei, halo and other exotic nuclei These topics are not only very interesting from a theoretical nuclear physics perspective but are also quite complimentary for ongoing nuclear physics experimental programs worldwide. The book chapters, written by experienced and well-known researchers/experts, will be helpful for master students, graduate students and researchers and serve as a standard and up-to-date research reference book on the topics covered.
Publisher: CRC Press
ISBN: 1000072320
Category : Computers
Languages : en
Pages : 428
Book Description
Nuclear Structure Physics connects to some of our fundamental questions about the creation of the universe and its basic constituents. At the same time, precise knowledge on the subject has led to the development of many important tools for humankind such as proton therapy and radioactive dating, among others. This book has chapters on some of the crucial and trending research topics in nuclear structure, including the nuclei lying on the extremes of spin, isospin and mass. A better theoretical understanding of these topics is important beyond the confines of the nuclear structure community. Additionally, the book will showcase the applicability and success of the different nuclear effective interaction parameters near the drip line, where hints for level reordering have already been seen, and where one can test the isospin-dependence of the interaction. The book offers comprehensive coverage of the most essential topics, including: • Nuclear Structure of Nuclei at or Near Drip-Lines • Synthesis challenges and properties of Superheavy nuclei • Nuclear Structure and Nuclear models - Ab-initio calculations, cluster models, Shell-model/DSM, RMF, Skyrme • Shell Closure, Magicity and other novel features of nuclei at extremes • Structure of Toroidal, Bubble Nuclei, halo and other exotic nuclei These topics are not only very interesting from a theoretical nuclear physics perspective but are also quite complimentary for ongoing nuclear physics experimental programs worldwide. The book chapters, written by experienced and well-known researchers/experts, will be helpful for master students, graduate students and researchers and serve as a standard and up-to-date research reference book on the topics covered.
Contemporary Computer-Assisted Approaches to Molecular Structure Elucidation
Author: Mikhail E Elyashberg
Publisher: Royal Society of Chemistry
ISBN: 1782625763
Category : Science
Languages : en
Pages : 505
Book Description
Computer-Assisted Structure Elucidation (CASE) systems are a combination of software algorithms and tools to support and enable chemists and spectroscopists engaged in the process of molecular structure elucidation via the analysis of spectroscopic data. These expert systems dramatically reduce the time associated with structure elucidation and improve the reliability of the results. Contemporary Computer-Assisted Approaches to Molecular Structure Elucidation describes the principles on which these expert systems for spectroscopic structure elucidation are based and concisely explains the algorithmic concepts behind the programs. The authors use their own personal experiences in the development of the Structure Elucidator (StrucEluc) CASE software system to discuss the present state-of-the-art in computer-assisted structure elucidation. Scientists that are presently using CASE systems will be interested in the algorithms and modern approaches and for organizations that are currently using the StrucEluc platform the book is designed to help researchers understand the strategies behind CASE as well as details regarding the StrucEluc platform. For scientists that have never used CASE systems they will now have access to all necessary information to understand CASE systems for mastering this new and very effective approach to structure elucidation. The authors overall goal is writing this book is to produce the 'must read' definitive text that will represent the results of decades of work to develop computer-assisted structure elucidation software systems. CASE systems are now powerful software tools commonly outperforming and correcting human interpretations of data. This book will also provide an historical perspective of the work of the founding fathers of the technique and identify the challenges that have been overcome to produce modern CASE systems.
Publisher: Royal Society of Chemistry
ISBN: 1782625763
Category : Science
Languages : en
Pages : 505
Book Description
Computer-Assisted Structure Elucidation (CASE) systems are a combination of software algorithms and tools to support and enable chemists and spectroscopists engaged in the process of molecular structure elucidation via the analysis of spectroscopic data. These expert systems dramatically reduce the time associated with structure elucidation and improve the reliability of the results. Contemporary Computer-Assisted Approaches to Molecular Structure Elucidation describes the principles on which these expert systems for spectroscopic structure elucidation are based and concisely explains the algorithmic concepts behind the programs. The authors use their own personal experiences in the development of the Structure Elucidator (StrucEluc) CASE software system to discuss the present state-of-the-art in computer-assisted structure elucidation. Scientists that are presently using CASE systems will be interested in the algorithms and modern approaches and for organizations that are currently using the StrucEluc platform the book is designed to help researchers understand the strategies behind CASE as well as details regarding the StrucEluc platform. For scientists that have never used CASE systems they will now have access to all necessary information to understand CASE systems for mastering this new and very effective approach to structure elucidation. The authors overall goal is writing this book is to produce the 'must read' definitive text that will represent the results of decades of work to develop computer-assisted structure elucidation software systems. CASE systems are now powerful software tools commonly outperforming and correcting human interpretations of data. This book will also provide an historical perspective of the work of the founding fathers of the technique and identify the challenges that have been overcome to produce modern CASE systems.
Handbook of Computational Molecular Biology
Author: Srinivas Aluru
Publisher: Chapman and Hall/CRC
ISBN: 9781584884064
Category : Science
Languages : en
Pages : 1104
Book Description
The enormous complexity of biological systems at the molecular level must be answered with powerful computational methods. Computational biology is a young field, but has seen rapid growth and advancement over the past few decades. Surveying the progress made in this multidisciplinary field, the Handbook of Computational Molecular Biology offers comprehensive, systematic coverage of the various techniques and methodologies currently available. Accomplished researcher Srinivas Aluru leads a team of experts from around the world to produce this groundbreaking, authoritative reference. With discussions ranging from fundamental concepts to practical applications, this book details the algorithms necessary to solve novel problems and manage the massive amounts of data housed in biological databases throughout the world. Divided into eight sections for convenient searching, the handbook covers methods and algorithms for sequence alignment, string data structures, sequence assembly and clustering, genome-scale computational methods in comparative genomics, evolutionary and phylogenetic trees, microarrays and gene expression analysis, computational methods in structural biology, and bioinformatics databases and data mining. The Handbook of Computational Molecular Biology is the first resource to integrate coverage of the broad spectrum of topics in computational biology and bioinformatics. It supplies a quick-reference guide for easy implementation and provides a strong foundation for future discoveries in the field.
Publisher: Chapman and Hall/CRC
ISBN: 9781584884064
Category : Science
Languages : en
Pages : 1104
Book Description
The enormous complexity of biological systems at the molecular level must be answered with powerful computational methods. Computational biology is a young field, but has seen rapid growth and advancement over the past few decades. Surveying the progress made in this multidisciplinary field, the Handbook of Computational Molecular Biology offers comprehensive, systematic coverage of the various techniques and methodologies currently available. Accomplished researcher Srinivas Aluru leads a team of experts from around the world to produce this groundbreaking, authoritative reference. With discussions ranging from fundamental concepts to practical applications, this book details the algorithms necessary to solve novel problems and manage the massive amounts of data housed in biological databases throughout the world. Divided into eight sections for convenient searching, the handbook covers methods and algorithms for sequence alignment, string data structures, sequence assembly and clustering, genome-scale computational methods in comparative genomics, evolutionary and phylogenetic trees, microarrays and gene expression analysis, computational methods in structural biology, and bioinformatics databases and data mining. The Handbook of Computational Molecular Biology is the first resource to integrate coverage of the broad spectrum of topics in computational biology and bioinformatics. It supplies a quick-reference guide for easy implementation and provides a strong foundation for future discoveries in the field.