Mathematical and Quantum Aspects of Relativity and Cosmology

Mathematical and Quantum Aspects of Relativity and Cosmology PDF Author: Spiros Cotsakis
Publisher: Springer
ISBN: 3540466711
Category : Science
Languages : en
Pages : 259

Get Book Here

Book Description
This book is written in a pedagogical style intelligible for graduate students. It reviews recent progress in black-hole and wormhole theory and in mathematical cosmology within the framework of Einstein's field equations and beyond, including quantum effects. This collection of essays, written by leading scientists of long standing reputation, should become an indispensable source for future research.

Mathematical and Quantum Aspects of Relativity and Cosmology

Mathematical and Quantum Aspects of Relativity and Cosmology PDF Author: Spiros Cotsakis
Publisher: Springer
ISBN: 3540466711
Category : Science
Languages : en
Pages : 259

Get Book Here

Book Description
This book is written in a pedagogical style intelligible for graduate students. It reviews recent progress in black-hole and wormhole theory and in mathematical cosmology within the framework of Einstein's field equations and beyond, including quantum effects. This collection of essays, written by leading scientists of long standing reputation, should become an indispensable source for future research.

Aspects of Quantum Field Theory in Curved Spacetime

Aspects of Quantum Field Theory in Curved Spacetime PDF Author: Stephen A. Fulling
Publisher: Cambridge University Press
ISBN: 9780521377683
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
The theory of quantum fields on curved spacetimes has attracted great attention since the discovery, by Stephen Hawking, of black-hole evaporation. It remains an important subject for the understanding of such contemporary topics as inflationary cosmology, quantum gravity and superstring theory. This book provides, for mathematicians, an introduction to this field of physics in a language and from a viewpoint which such a reader should find congenial. Physicists should also gain from reading this book a sound grasp of various aspects of the theory, some of which have not been particularly emphasised in the existing review literature. The topics covered include normal-mode expansions for a general elliptic operator, Fock space, the Casimir effect, the 'Klein' paradox, particle definition and particle creation in expanding universes, asymptotic expansion of Green's functions and heat kernels, and renormalisation of the stress tensor. The style is pedagogic rather than formal; some knowledge of general relativity and differential geometry is assumed, but the author does supply background material on functional analysis and quantum field theory as required. The book arose from a course taught to graduate students and could be used for self-study or for advanced courses in relativity and quantum field theory.

Modern Canonical Quantum General Relativity

Modern Canonical Quantum General Relativity PDF Author: Thomas Thiemann
Publisher: Cambridge University Press
ISBN: 113946759X
Category : Science
Languages : en
Pages : 739

Get Book Here

Book Description
This book provides a complete treatise of the canonical quantisation of general relativity and the loop quantum gravity theory. Mathematical concepts are provided, so it can be read by graduate students with a basic knowledge of quantum field theory or general relativity.

An Introduction to Tensor Calculus and Relativity

An Introduction to Tensor Calculus and Relativity PDF Author: Derek Frank Lawden
Publisher:
ISBN: 9781258787417
Category :
Languages : en
Pages : 184

Get Book Here

Book Description


A Mathematical Journey to Quantum Mechanics

A Mathematical Journey to Quantum Mechanics PDF Author: Salvatore Capozziello
Publisher: Springer Nature
ISBN: 3030860981
Category : Science
Languages : en
Pages : 294

Get Book Here

Book Description
This book provides an itinerary to quantum mechanics taking into account the basic mathematics to formulate it. Specifically, it features the main experiments and postulates of quantum mechanics pointing out their mathematical prominent aspects showing how physical concepts and mathematical tools are deeply intertwined. The material covers topics such as analytic mechanics in Newtonian, Lagrangian, and Hamiltonian formulations, theory of light as formulated in special relativity, and then why quantum mechanics is necessary to explain experiments like the double-split, atomic spectra, and photoelectric effect. The Schrödinger equation and its solutions are developed in detail. It is pointed out that, starting from the concept of the harmonic oscillator, it is possible to develop advanced quantum mechanics. Furthermore, the mathematics behind the Heisenberg uncertainty principle is constructed towards advanced quantum mechanical principles. Relativistic quantum mechanics is finally considered.The book is devoted to undergraduate students from University courses of Physics, Mathematics, Chemistry, and Engineering. It consists of 50 self-contained lectures, and any statement and theorem are demonstrated in detail. It is the companion book of "A Mathematical Journey to Relativity", by the same Authors, published by Springer in 2020.

The Problem of Time

The Problem of Time PDF Author: Edward Anderson
Publisher: Springer
ISBN: 3319588486
Category : Science
Languages : en
Pages : 917

Get Book Here

Book Description
This book is a treatise on time and on background independence in physics. It first considers how time is conceived of in each accepted paradigm of physics: Newtonian, special relativity, quantum mechanics (QM) and general relativity (GR). Substantial differences are moreover uncovered between what is meant by time in QM and in GR. These differences jointly source the Problem of Time: Nine interlinked facets which arise upon attempting concurrent treatment of the QM and GR paradigms, as is required in particular for a background independent theory of quantum gravity. A sizeable proportion of current quantum gravity programs - e.g. geometrodynamical and loop quantum gravity approaches to quantum GR, quantum cosmology, supergravity and M-theory - are background independent in this sense. This book's foundational topic is thus furthermore of practical relevance in the ongoing development of quantum gravity programs. This book shows moreover that eight of the nine facets of the Problem of Time already occur upon entertaining background independence in classical (rather than quantum) physics. By this development, and interpreting shape theory as modelling background independence, this book further establishes background independence as a field of study. Background independent mechanics, as well as minisuperspace (spatially homogeneous) models of GR and perturbations thereabout are used to illustrate these points. As hitherto formulated, the different facets of the Problem of Time greatly interfere with each others' attempted resolutions. This book explains how, none the less, a local resolution of the Problem of Time can be arrived at after various reconceptualizations of the facets and reformulations of their mathematical implementation. Self-contained appendices on mathematical methods for basic and foundational quantum gravity are included. Finally, this book outlines how supergravity is refreshingly different from GR as a realization of background independence, and what background independence entails at the topological level and beyond.

Tensors, Relativity, and Cosmology

Tensors, Relativity, and Cosmology PDF Author: Mirjana Dalarsson
Publisher: Academic Press
ISBN: 0128034017
Category : Science
Languages : en
Pages : 276

Get Book Here

Book Description
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in motion, relativistic addition of velocities, and the twin paradox, as well as new material on gravitational waves, amongst other topics. Clearly combines relativity, astrophysics, and cosmology in a single volume Extensive introductions to each section are followed by relevant examples and numerous exercises Presents topics of interest to those researching and studying tensor calculus, the theory of relativity, gravitation, cosmology, quantum cosmology, Robertson-Walker Metrics, curvature tensors, kinematics, black holes, and more Fully revised and updated with 80 pages of new material on relativistic effects, such as relativity of simultaneity and relativity of the concept of distance, amongst other topics Provides an easy-to-understand approach to this advanced field of mathematics and modern physics by providing highly detailed derivations of all equations and results

Canonical Gravity and Applications

Canonical Gravity and Applications PDF Author: Martin Bojowald
Publisher: Cambridge University Press
ISBN: 1139494139
Category : Science
Languages : en
Pages : 313

Get Book Here

Book Description
Canonical methods are a powerful mathematical tool within the field of gravitational research, both theoretical and experimental, and have contributed to a number of recent developments in physics. Providing mathematical foundations as well as physical applications, this is the first systematic explanation of canonical methods in gravity. The book discusses the mathematical and geometrical notions underlying canonical tools, highlighting their applications in all aspects of gravitational research from advanced mathematical foundations to modern applications in cosmology and black hole physics. The main canonical formulations, including the Arnowitt-Deser-Misner (ADM) formalism and Ashtekar variables, are derived and discussed. Ideal for both graduate students and researchers, this book provides a link between standard introductions to general relativity and advanced expositions of black hole physics, theoretical cosmology or quantum gravity.

Physics for Mathematicians

Physics for Mathematicians PDF Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733

Get Book Here

Book Description


An Introduction to Mathematical Cosmology

An Introduction to Mathematical Cosmology PDF Author: Jamal N. Islam
Publisher: Cambridge University Press
ISBN: 9780521499736
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
An introductory textbook on mathematical cosmology for beginning graduate students.