Mastering the Data Scientist Interview - Beneficial in Learning In-Demand Big Data Technologies to Help Fresh Graduates Grab High Paying Data Science Job Roles in the Top IT Firms Globally

Mastering the Data Scientist Interview - Beneficial in Learning In-Demand Big Data Technologies to Help Fresh Graduates Grab High Paying Data Science Job Roles in the Top IT Firms Globally PDF Author: Vibrant Publishers
Publisher:
ISBN: 9781636510774
Category :
Languages : en
Pages :

Get Book Here

Book Description
Mastering The Data Scientist Interview - Beneficial in learning in-demand Big Data Technologies to help fresh graduates grab high paying Data Science job roles in the Top IT Firms globally!Rather than going through comprehensive, textbook-sized reference guides, this book includes only the information required immediately for job search to build an IT career. This book puts the interviewee in the driver's seat and helps them steer their way to impress the interviewer.1800+ Interview QuestionsReal life scenario based questionsStrategies to respond to interview questionsFree 2 Aptitude Tests onlineThis COMBO includes the following SIX Books:C & C++ Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383136)CORE JAVA Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383129)Data Structures & Algorithms Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383068)ORACLE PL/SQL Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383112)Python Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383822)Hadoop BIG DATA Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383488)

Mastering the Data Scientist Interview - Beneficial in Learning In-Demand Big Data Technologies to Help Fresh Graduates Grab High Paying Data Science Job Roles in the Top IT Firms Globally

Mastering the Data Scientist Interview - Beneficial in Learning In-Demand Big Data Technologies to Help Fresh Graduates Grab High Paying Data Science Job Roles in the Top IT Firms Globally PDF Author: Vibrant Publishers
Publisher:
ISBN: 9781636510774
Category :
Languages : en
Pages :

Get Book Here

Book Description
Mastering The Data Scientist Interview - Beneficial in learning in-demand Big Data Technologies to help fresh graduates grab high paying Data Science job roles in the Top IT Firms globally!Rather than going through comprehensive, textbook-sized reference guides, this book includes only the information required immediately for job search to build an IT career. This book puts the interviewee in the driver's seat and helps them steer their way to impress the interviewer.1800+ Interview QuestionsReal life scenario based questionsStrategies to respond to interview questionsFree 2 Aptitude Tests onlineThis COMBO includes the following SIX Books:C & C++ Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383136)CORE JAVA Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383129)Data Structures & Algorithms Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383068)ORACLE PL/SQL Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383112)Python Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383822)Hadoop BIG DATA Interview Questions You'll Most Likely Be Asked (ISBN-13: 978-1946383488)

Machine Learning

Machine Learning PDF Author: Peter Flach
Publisher: Cambridge University Press
ISBN: 1107096391
Category : Computers
Languages : en
Pages : 415

Get Book Here

Book Description
Covering all the main approaches in state-of-the-art machine learning research, this will set a new standard as an introductory textbook.

How to Lead in Data Science

How to Lead in Data Science PDF Author: Jike Chong
Publisher: Simon and Schuster
ISBN: 1638356807
Category : Computers
Languages : en
Pages : 823

Get Book Here

Book Description
A field guide for the unique challenges of data science leadership, filled with transformative insights, personal experiences, and industry examples. In How To Lead in Data Science you will learn: Best practices for leading projects while balancing complex trade-offs Specifying, prioritizing, and planning projects from vague requirements Navigating structural challenges in your organization Working through project failures with positivity and tenacity Growing your team with coaching, mentoring, and advising Crafting technology roadmaps and championing successful projects Driving diversity, inclusion, and belonging within teams Architecting a long-term business strategy and data roadmap as an executive Delivering a data-driven culture and structuring productive data science organizations How to Lead in Data Science is full of techniques for leading data science at every seniority level—from heading up a single project to overseeing a whole company's data strategy. Authors Jike Chong and Yue Cathy Chang share hard-won advice that they've developed building data teams for LinkedIn, Acorns, Yiren Digital, large asset-management firms, Fortune 50 companies, and more. You'll find advice on plotting your long-term career advancement, as well as quick wins you can put into practice right away. Carefully crafted assessments and interview scenarios encourage introspection, reveal personal blind spots, and highlight development areas. About the technology Lead your data science teams and projects to success! To make a consistent, meaningful impact as a data science leader, you must articulate technology roadmaps, plan effective project strategies, support diversity, and create a positive environment for professional growth. This book delivers the wisdom and practical skills you need to thrive as a data science leader at all levels, from team member to the C-suite. About the book How to Lead in Data Science shares unique leadership techniques from high-performance data teams. It’s filled with best practices for balancing project trade-offs and producing exceptional results, even when beginning with vague requirements or unclear expectations. You’ll find a clearly presented modern leadership framework based on current case studies, with insights reaching all the way to Aristotle and Confucius. As you read, you’ll build practical skills to grow and improve your team, your company’s data culture, and yourself. What's inside How to coach and mentor team members Navigate an organization’s structural challenges Secure commitments from other teams and partners Stay current with the technology landscape Advance your career About the reader For data science practitioners at all levels. About the author Dr. Jike Chong and Yue Cathy Chang build, lead, and grow high-performing data teams across industries in public and private companies, such as Acorns, LinkedIn, large asset-management firms, and Fortune 50 companies. Table of Contents 1 What makes a successful data scientist? PART 1 THE TECH LEAD: CULTIVATING LEADERSHIP 2 Capabilities for leading projects 3 Virtues for leading projects PART 2 THE MANAGER: NURTURING A TEAM 4 Capabilities for leading people 5 Virtues for leading people PART 3 THE DIRECTOR: GOVERNING A FUNCTION 6 Capabilities for leading a function 7 Virtues for leading a function PART 4 THE EXECUTIVE: INSPIRING AN INDUSTRY 8 Capabilities for leading a company 9 Virtues for leading a company PART 5 THE LOOP AND THE FUTURE 10 Landscape, organization, opportunity, and practice 11 Leading in data science and a future outlook

Data Science in Practice

Data Science in Practice PDF Author: Alan Said
Publisher: Springer
ISBN: 3319975560
Category : Technology & Engineering
Languages : en
Pages : 199

Get Book Here

Book Description
This book approaches big data, artificial intelligence, machine learning, and business intelligence through the lens of Data Science. We have grown accustomed to seeing these terms mentioned time and time again in the mainstream media. However, our understanding of what they actually mean often remains limited. This book provides a general overview of the terms and approaches used broadly in data science, and provides detailed information on the underlying theories, models, and application scenarios. Divided into three main parts, it addresses what data science is; how and where it is used; and how it can be implemented using modern open source software. The book offers an essential guide to modern data science for all students, practitioners, developers and managers seeking a deeper understanding of how various aspects of data science work, and of how they can be employed to gain a competitive advantage.

Fifty Challenging Problems in Probability with Solutions

Fifty Challenging Problems in Probability with Solutions PDF Author: Frederick Mosteller
Publisher: Courier Corporation
ISBN: 0486134962
Category : Mathematics
Languages : en
Pages : 100

Get Book Here

Book Description
Remarkable puzzlers, graded in difficulty, illustrate elementary and advanced aspects of probability. These problems were selected for originality, general interest, or because they demonstrate valuable techniques. Also includes detailed solutions.

Conceptual Statistics for Beginners

Conceptual Statistics for Beginners PDF Author: Isadore Newman
Publisher: University Press of America
ISBN: 9780819194206
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
This new edition emphasizes and facilitates the conceptual understanding of statistics and statistical concepts for the purpose of reading and accurately interpreting research literature. The use of hand calculators is deemphasized. Instead, computer example setups are supplied for SPSS and SAS.

Data Science and Machine Learning

Data Science and Machine Learning PDF Author: Dirk P. Kroese
Publisher: CRC Press
ISBN: 1000730778
Category : Business & Economics
Languages : en
Pages : 538

Get Book Here

Book Description
Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

The Data Science Design Manual

The Data Science Design Manual PDF Author: Steven S. Skiena
Publisher: Springer
ISBN: 3319554441
Category : Computers
Languages : en
Pages : 456

Get Book Here

Book Description
This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an “Introduction to Data Science” course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains “War Stories,” offering perspectives on how data science applies in the real world Includes “Homework Problems,” providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides “Take-Home Lessons,” emphasizing the big-picture concepts to learn from each chapter Recommends exciting “Kaggle Challenges” from the online platform Kaggle Highlights “False Starts,” revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show “The Quant Shop” (www.quant-shop.com)

The Fourth Industrial Revolution

The Fourth Industrial Revolution PDF Author: Klaus Schwab
Publisher: Crown Currency
ISBN: 1524758876
Category : Business & Economics
Languages : en
Pages : 194

Get Book Here

Book Description
World-renowned economist Klaus Schwab, Founder and Executive Chairman of the World Economic Forum, explains that we have an opportunity to shape the fourth industrial revolu­tion, which will fundamentally alter how we live and work. Schwab argues that this revolution is different in scale, scope and complexity from any that have come before. Characterized by a range of new technologies that are fusing the physical, digital and biological worlds, the developments are affecting all disciplines, economies, industries and governments, and even challenging ideas about what it means to be human. Artificial intelligence is already all around us, from supercomputers, drones and virtual assistants to 3D printing, DNA sequencing, smart thermostats, wear­able sensors and microchips smaller than a grain of sand. But this is just the beginning: nanomaterials 200 times stronger than steel and a million times thinner than a strand of hair and the first transplant of a 3D printed liver are already in development. Imagine “smart factories” in which global systems of manu­facturing are coordinated virtually, or implantable mobile phones made of biosynthetic materials. The fourth industrial revolution, says Schwab, is more significant, and its ramifications more profound, than in any prior period of human history. He outlines the key technologies driving this revolution and discusses the major impacts expected on government, business, civil society and individu­als. Schwab also offers bold ideas on how to harness these changes and shape a better future—one in which technology empowers people rather than replaces them; progress serves society rather than disrupts it; and in which innovators respect moral and ethical boundaries rather than cross them. We all have the opportunity to contribute to developing new frame­works that advance progress.

An Introduction to Data

An Introduction to Data PDF Author: Francesco Corea
Publisher: Springer
ISBN: 3030044688
Category : Technology & Engineering
Languages : en
Pages : 131

Get Book Here

Book Description
This book reflects the author’s years of hands-on experience as an academic and practitioner. It is primarily intended for executives, managers and practitioners who want to redefine the way they think about artificial intelligence (AI) and other exponential technologies. Accordingly the book, which is structured as a collection of largely self-contained articles, includes both general strategic reflections and detailed sector-specific information. More concretely, it shares insights into what it means to work with AI and how to do it more efficiently; what it means to hire a data scientist and what new roles there are in the field; how to use AI in specific industries such as finance or insurance; how AI interacts with other technologies such as blockchain; and, in closing, a review of the use of AI in venture capital, as well as a snapshot of acceleration programs for AI companies.