Author: Xueshang Feng
Publisher: Springer
ISBN: 9811390819
Category : Science
Languages : en
Pages : 785
Book Description
The book covers intimately all the topics necessary for the development of a robust magnetohydrodynamic (MHD) code within the framework of the cell-centered finite volume method (FVM) and its applications in space weather study. First, it presents a brief review of existing MHD models in studying solar corona and the heliosphere. Then it introduces the cell-centered FVM in three-dimensional computational domain. Finally, the book presents some applications of FVM to the MHD codes on spherical coordinates in various research fields of space weather, focusing on the development of the 3D Solar-InterPlanetary space-time Conservation Element and Solution Element (SIP-CESE) MHD model and its applications to space weather studies in various aspects. The book is written for senior undergraduates, graduate students, lecturers, engineers and researchers in solar-terrestrial physics, space weather theory, modeling, and prediction, computational fluid dynamics, and MHD simulations. It helps readers to fully understand and implement a robust and versatile MHD code based on the cell-centered FVM.
Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere
The 3-D Heliosphere at Solar Maximum
Author: R.G. Marsden
Publisher: Springer Science & Business Media
ISBN: 9401732302
Category : Science
Languages : en
Pages : 416
Book Description
Our knowledge of the heliosphere in three dimensions near solar minimum has advanced significantly in the last 10 years, largely as a result of the on-going ESAINASA Ulysses mission. Similar advances in our understanding of the global heliosphere near solar maximum are to be expected with the return of Ulysses to high solar latitudes in 2000/200 I. With this in mind, the 34th ESLAB Symposium, held at ESTEC in Noordwijk, The Netherlands, on 3-6 October, 2000, was devoted to 'The 3-D Heliosphere at Solar Maximum'. This was the third ESLAB Sympo sium focusing on the three-dimensional heliosphere (previous symposia being in 1985 and 1994), and the timing was particularly appropriate, marking as it did the 10th anniversary of the launch of the Ulysses spacecraft. Furthermore, Ulysses had just started its third high-latitude pass, the second over the Sun's south polar regions. The symposium addressed a wide range of topics related to the solar-maximum heliosphere, with presentations on many of the latest findings from Ulysses and other space-based missions. Ground-based studies and theoretical modeling were also well represented. Specific questions to which answers were sought included the following.
Publisher: Springer Science & Business Media
ISBN: 9401732302
Category : Science
Languages : en
Pages : 416
Book Description
Our knowledge of the heliosphere in three dimensions near solar minimum has advanced significantly in the last 10 years, largely as a result of the on-going ESAINASA Ulysses mission. Similar advances in our understanding of the global heliosphere near solar maximum are to be expected with the return of Ulysses to high solar latitudes in 2000/200 I. With this in mind, the 34th ESLAB Symposium, held at ESTEC in Noordwijk, The Netherlands, on 3-6 October, 2000, was devoted to 'The 3-D Heliosphere at Solar Maximum'. This was the third ESLAB Sympo sium focusing on the three-dimensional heliosphere (previous symposia being in 1985 and 1994), and the timing was particularly appropriate, marking as it did the 10th anniversary of the launch of the Ulysses spacecraft. Furthermore, Ulysses had just started its third high-latitude pass, the second over the Sun's south polar regions. The symposium addressed a wide range of topics related to the solar-maximum heliosphere, with presentations on many of the latest findings from Ulysses and other space-based missions. Ground-based studies and theoretical modeling were also well represented. Specific questions to which answers were sought included the following.
Reviews in astronomy and space sciences
Author: Christopher H. K. Chen
Publisher: Frontiers Media SA
ISBN: 2832549365
Category : Science
Languages : en
Pages : 435
Book Description
Publisher: Frontiers Media SA
ISBN: 2832549365
Category : Science
Languages : en
Pages : 435
Book Description
Magnetohydrodynamics of the Sun
Author: Eric Priest
Publisher: Cambridge University Press
ISBN: 0521854717
Category : Science
Languages : en
Pages : 581
Book Description
This advanced textbook reviews the complex interaction between the Sun's plasma atmosphere and its magnetic field.
Publisher: Cambridge University Press
ISBN: 0521854717
Category : Science
Languages : en
Pages : 581
Book Description
This advanced textbook reviews the complex interaction between the Sun's plasma atmosphere and its magnetic field.
New Millennium Solar Physics
Author: Markus J. Aschwanden
Publisher: Springer
ISBN: 3030139565
Category : Science
Languages : en
Pages : 719
Book Description
This is a follow-on book to the introductory textbook "Physics of the Solar Corona" previously published in 2004 by the same author, which provided a systematic introduction and covered mostly scientific results from the pre-2000 era. Using a similar structure as the previous book the second volume provides a seamless continuation of numerous novel research results in solar physics that emerged in the new millennium (after 2000) from the new solar missions of RHESSI, STEREO, Hinode, CORONAS, and the Solar Dynamics Observatory (SDO) during the era of 2000-2018. The new solar space missions are characterized by unprecedented high-resolution imaging, time resolution, spectral capabilities, stereoscopy and tomography, which reveal the intricate dynamics of magneto-hydrodynamic processes in the solar corona down to scales of 100 km. The enormous amount of data streaming down from SDO in Terabytes per day requires advanced automated data processing methods. The book focuses exclusively on new research results after 2000, which are reviewed in a comprehensive manner, documented by over 3600 literature references, covering theory, observations, and numerical modeling of basic physical processes that are observed in high-temperature plasmas of the Sun and other astrophysical objects, such as plasma instabilities, coronal heating, magnetic reconnection processes, coronal mass ejections, plasma waves and oscillations, or particle acceleration.
Publisher: Springer
ISBN: 3030139565
Category : Science
Languages : en
Pages : 719
Book Description
This is a follow-on book to the introductory textbook "Physics of the Solar Corona" previously published in 2004 by the same author, which provided a systematic introduction and covered mostly scientific results from the pre-2000 era. Using a similar structure as the previous book the second volume provides a seamless continuation of numerous novel research results in solar physics that emerged in the new millennium (after 2000) from the new solar missions of RHESSI, STEREO, Hinode, CORONAS, and the Solar Dynamics Observatory (SDO) during the era of 2000-2018. The new solar space missions are characterized by unprecedented high-resolution imaging, time resolution, spectral capabilities, stereoscopy and tomography, which reveal the intricate dynamics of magneto-hydrodynamic processes in the solar corona down to scales of 100 km. The enormous amount of data streaming down from SDO in Terabytes per day requires advanced automated data processing methods. The book focuses exclusively on new research results after 2000, which are reviewed in a comprehensive manner, documented by over 3600 literature references, covering theory, observations, and numerical modeling of basic physical processes that are observed in high-temperature plasmas of the Sun and other astrophysical objects, such as plasma instabilities, coronal heating, magnetic reconnection processes, coronal mass ejections, plasma waves and oscillations, or particle acceleration.
Low-Frequency Waves in Space Plasmas
Author: Andreas Keiling
Publisher: John Wiley & Sons
ISBN: 1119055024
Category : Science
Languages : en
Pages : 528
Book Description
Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun’s atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.
Publisher: John Wiley & Sons
ISBN: 1119055024
Category : Science
Languages : en
Pages : 528
Book Description
Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun’s atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.
Physics of the Solar Corona
Author: Constantin J. Macris
Publisher:
ISBN:
Category : Sun
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Sun
Languages : en
Pages : 0
Book Description
Snakes on a spaceship—An overview of python in space physics
Author: Angeline G. Burrell
Publisher: Frontiers Media SA
ISBN: 2832529593
Category : Science
Languages : en
Pages : 436
Book Description
Publisher: Frontiers Media SA
ISBN: 2832529593
Category : Science
Languages : en
Pages : 436
Book Description
Space Weather
Author: Jean Lilensten
Publisher: Springer Science & Business Media
ISBN: 1402054467
Category : Science
Languages : en
Pages : 331
Book Description
This book shows the state-of-the-art in Europe on a very new discipline, Space Weather. This discipline lies at the edge between science and industry. This book reflects such a position with theoretic papers and applicative papers as well. Each chapter starts with a short introduction, which shows the coherence of a given domain. Then, four to five contributions written by the best specialists in Europe give detailed hints of a hot topic in space weather.
Publisher: Springer Science & Business Media
ISBN: 1402054467
Category : Science
Languages : en
Pages : 331
Book Description
This book shows the state-of-the-art in Europe on a very new discipline, Space Weather. This discipline lies at the edge between science and industry. This book reflects such a position with theoretic papers and applicative papers as well. Each chapter starts with a short introduction, which shows the coherence of a given domain. Then, four to five contributions written by the best specialists in Europe give detailed hints of a hot topic in space weather.
Extreme Events in Geospace
Author: Natalia Buzulukova
Publisher: Elsevier
ISBN: 0128127015
Category : Science
Languages : en
Pages : 800
Book Description
Extreme Events in Geospace: Origins, Predictability, and Consequences helps deepen the understanding, description, and forecasting of the complex and inter-related phenomena of extreme space weather events. Composed of chapters written by representatives from many different institutions and fields of space research, the book offers discussions ranging from definitions and historical knowledge to operational issues and methods of analysis. Given that extremes in ionizing radiation, ionospheric irregularities, and geomagnetically induced currents may have the potential to disrupt our technologies or pose danger to human health, it is increasingly important to synthesize the information available on not only those consequences but also the origins and predictability of such events. Extreme Events in Geospace: Origins, Predictability, and Consequences is a valuable source for providing the latest research for geophysicists and space weather scientists, as well as industries impacted by space weather events, including GNSS satellites and radio communication, power grids, aviation, and human spaceflight. The list of first/second authors includes M. Hapgood, N. Gopalswamy, K.D. Leka, G. Barnes, Yu. Yermolaev, P. Riley, S. Sharma, G. Lakhina, B. Tsurutani, C. Ngwira, A. Pulkkinen, J. Love, P. Bedrosian, N. Buzulukova, M. Sitnov, W. Denig, M. Panasyuk, R. Hajra, D. Ferguson, S. Lai, L. Narici, K. Tobiska, G. Gapirov, A. Mannucci, T. Fuller-Rowell, X. Yue, G. Crowley, R. Redmon, V. Airapetian, D. Boteler, M. MacAlester, S. Worman, D. Neudegg, and M. Ishii. - Helps to define extremes in space weather and describes existing methods of analysis - Discusses current scientific understanding of these events and outlines future challenges - Considers the ways in which space weather may affect daily life - Demonstrates deep connections between astrophysics, heliophysics, and space weather applications, including a discussion of extreme space weather events from the past - Examines national and space policy issues concerning space weather in Australia, Canada, Japan, the United Kingdom, and the United States
Publisher: Elsevier
ISBN: 0128127015
Category : Science
Languages : en
Pages : 800
Book Description
Extreme Events in Geospace: Origins, Predictability, and Consequences helps deepen the understanding, description, and forecasting of the complex and inter-related phenomena of extreme space weather events. Composed of chapters written by representatives from many different institutions and fields of space research, the book offers discussions ranging from definitions and historical knowledge to operational issues and methods of analysis. Given that extremes in ionizing radiation, ionospheric irregularities, and geomagnetically induced currents may have the potential to disrupt our technologies or pose danger to human health, it is increasingly important to synthesize the information available on not only those consequences but also the origins and predictability of such events. Extreme Events in Geospace: Origins, Predictability, and Consequences is a valuable source for providing the latest research for geophysicists and space weather scientists, as well as industries impacted by space weather events, including GNSS satellites and radio communication, power grids, aviation, and human spaceflight. The list of first/second authors includes M. Hapgood, N. Gopalswamy, K.D. Leka, G. Barnes, Yu. Yermolaev, P. Riley, S. Sharma, G. Lakhina, B. Tsurutani, C. Ngwira, A. Pulkkinen, J. Love, P. Bedrosian, N. Buzulukova, M. Sitnov, W. Denig, M. Panasyuk, R. Hajra, D. Ferguson, S. Lai, L. Narici, K. Tobiska, G. Gapirov, A. Mannucci, T. Fuller-Rowell, X. Yue, G. Crowley, R. Redmon, V. Airapetian, D. Boteler, M. MacAlester, S. Worman, D. Neudegg, and M. Ishii. - Helps to define extremes in space weather and describes existing methods of analysis - Discusses current scientific understanding of these events and outlines future challenges - Considers the ways in which space weather may affect daily life - Demonstrates deep connections between astrophysics, heliophysics, and space weather applications, including a discussion of extreme space weather events from the past - Examines national and space policy issues concerning space weather in Australia, Canada, Japan, the United Kingdom, and the United States