Machine Learning Proceedings 1995

Machine Learning Proceedings 1995 PDF Author: Armand Prieditis
Publisher: Morgan Kaufmann
ISBN: 1483298663
Category : Computers
Languages : en
Pages : 606

Get Book Here

Book Description
Machine Learning Proceedings 1995

Machine Learning Proceedings 1995

Machine Learning Proceedings 1995 PDF Author: Armand Prieditis
Publisher: Morgan Kaufmann
ISBN: 1483298663
Category : Computers
Languages : en
Pages : 606

Get Book Here

Book Description
Machine Learning Proceedings 1995

Machine Learning Paradigms: Theory and Application

Machine Learning Paradigms: Theory and Application PDF Author: Aboul Ella Hassanien
Publisher: Springer
ISBN: 3030023575
Category : Technology & Engineering
Languages : en
Pages : 472

Get Book Here

Book Description
The book focuses on machine learning. Divided into three parts, the first part discusses the feature selection problem. The second part then describes the application of machine learning in the classification problem, while the third part presents an overview of real-world applications of swarm-based optimization algorithms. The concept of machine learning (ML) is not new in the field of computing. However, due to the ever-changing nature of requirements in today’s world it has emerged in the form of completely new avatars. Now everyone is talking about ML-based solution strategies for a given problem set. The book includes research articles and expository papers on the theory and algorithms of machine learning and bio-inspiring optimization, as well as papers on numerical experiments and real-world applications.

Advanced Lectures on Machine Learning

Advanced Lectures on Machine Learning PDF Author: Olivier Bousquet
Publisher: Springer
ISBN: 3540286500
Category : Computers
Languages : en
Pages : 249

Get Book Here

Book Description
Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.

Machine Learning

Machine Learning PDF Author: Zhi-Hua Zhou
Publisher: Springer Nature
ISBN: 9811519676
Category : Computers
Languages : en
Pages : 460

Get Book Here

Book Description
Machine Learning, a vital and core area of artificial intelligence (AI), is propelling the AI field ever further and making it one of the most compelling areas of computer science research. This textbook offers a comprehensive and unbiased introduction to almost all aspects of machine learning, from the fundamentals to advanced topics. It consists of 16 chapters divided into three parts: Part 1 (Chapters 1-3) introduces the fundamentals of machine learning, including terminology, basic principles, evaluation, and linear models; Part 2 (Chapters 4-10) presents classic and commonly used machine learning methods, such as decision trees, neural networks, support vector machines, Bayesian classifiers, ensemble methods, clustering, dimension reduction and metric learning; Part 3 (Chapters 11-16) introduces some advanced topics, covering feature selection and sparse learning, computational learning theory, semi-supervised learning, probabilistic graphical models, rule learning, and reinforcement learning. Each chapter includes exercises and further reading, so that readers can explore areas of interest. The book can be used as an undergraduate or postgraduate textbook for computer science, computer engineering, electrical engineering, data science, and related majors. It is also a useful reference resource for researchers and practitioners of machine learning.

Machine Learning and Its Applications

Machine Learning and Its Applications PDF Author: Georgios Paliouras
Publisher: Springer Science & Business Media
ISBN: 3540424903
Category : Computers
Languages : en
Pages : 334

Get Book Here

Book Description
In recent years machine learning has made its way from artificial intelligence into areas of administration, commerce, and industry. Data mining is perhaps the most widely known demonstration of this migration, complemented by less publicized applications of machine learning like adaptive systems in industry, financial prediction, medical diagnosis and the construction of user profiles for Web browsers. This book presents the capabilities of machine learning methods and ideas on how these methods could be used to solve real-world problems. The first ten chapters assess the current state of the art of machine learning, from symbolic concept learning and conceptual clustering to case-based reasoning, neural networks, and genetic algorithms. The second part introduces the reader to innovative applications of ML techniques in fields such as data mining, knowledge discovery, human language technology, user modeling, data analysis, discovery science, agent technology, finance, etc.

Interpretable Machine Learning

Interpretable Machine Learning PDF Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320

Get Book Here

Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

Advances in Neural Information Processing Systems 8

Advances in Neural Information Processing Systems 8 PDF Author: David S. Touretzky
Publisher: MIT Press
ISBN: 9780262201070
Category : Computers
Languages : en
Pages : 1128

Get Book Here

Book Description
The past decade has seen greatly increased interaction between theoretical work in neuroscience, cognitive science and information processing, and experimental work requiring sophisticated computational modeling. The 152 contributions in NIPS 8 focus on a wide variety of algorithms and architectures for both supervised and unsupervised learning. They are divided into nine parts: Cognitive Science, Neuroscience, Theory, Algorithms and Architectures, Implementations, Speech and Signal Processing, Vision, Applications, and Control. Chapters describe how neuroscientists and cognitive scientists use computational models of neural systems to test hypotheses and generate predictions to guide their work. This work includes models of how networks in the owl brainstem could be trained for complex localization function, how cellular activity may underlie rat navigation, how cholinergic modulation may regulate cortical reorganization, and how damage to parietal cortex may result in neglect. Additional work concerns development of theoretical techniques important for understanding the dynamics of neural systems, including formation of cortical maps, analysis of recurrent networks, and analysis of self- supervised learning. Chapters also describe how engineers and computer scientists have approached problems of pattern recognition or speech recognition using computational architectures inspired by the interaction of populations of neurons within the brain. Examples are new neural network models that have been applied to classical problems, including handwritten character recognition and object recognition, and exciting new work that focuses on building electronic hardware modeled after neural systems. A Bradford Book

Elements of Machine Learning

Elements of Machine Learning PDF Author: Pat Langley
Publisher: Morgan Kaufmann
ISBN: 9781558603011
Category : Computers
Languages : en
Pages : 436

Get Book Here

Book Description
Machine learning is the computational study of algorithms that improve performance based on experience, and this book covers the basic issues of artificial intelligence. Individual sections introduce the basic concepts and problems in machine learning, describe algorithms, discuss adaptions of the learning methods to more complex problem-solving tasks and much more.

Agents and Artificial Intelligence

Agents and Artificial Intelligence PDF Author: Ana Paula Rocha
Publisher: Springer Nature
ISBN: 3031229533
Category : Computers
Languages : en
Pages : 236

Get Book Here

Book Description
This book contains the revised and extended versions of selected papers from the 14th International Conference on Agents and Artificial Intelligence, ICAART 2022, which took place virtually during February 3–5, 2022. The conference was originally planned to take place in Vienna, Austria, but had to change to an online format due to the COVID-19 pandemic. The 9 full papers included in this book were carefully reviewed and selected from 302 submissions. They were organized in topical sections as follows: agents; artificial intelligence.

Learning to Learn

Learning to Learn PDF Author: Sebastian Thrun
Publisher: Springer Science & Business Media
ISBN: 1461555299
Category : Computers
Languages : en
Pages : 346

Get Book Here

Book Description
Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.