Author: ReadyAI
Publisher: Ready AI LLC
ISBN:
Category : Computers
Languages : en
Pages : 46
Book Description
Is your child interested in sci-fi, robots, or video games? Is your kid fascinated by smart home assistants and the prospect of self-driving cars? Time to turn that enthusiasm into action and engage with the exciting world of artificial intelligence! AI+Me is a series designed to introduce the 5 Big Ideas of Artificial Intelligence to young learners. Students take a deep dive into the Five Big Ideas of AI (Perception, Representation and Reasoning, Learning, Natural Interaction, and Societal Impact). This is the 3rd book in the AI+Me series focused on Learning. The series is recommended for K-2 students. Why should children be educated about AI? Learning AI opens up a world of opportunities. As the fastest growing area of computer science, AI will become the most important change force when our children grow up so it is critical they learn about it early. AI is fun! The field of AI started with scientists making computers learn to play games. AI is an incredibly fun way to introduce kids to programming and pique their interest in advanced topics like deep learning. Lastly, a topic like AI naturally opens up discussions about our humanity. In our curriculum, we dig deep into questions like “does AI positively or negatively impact society?” In doing so we aim to develop critical thinking skills and encourage students to reflect deeply. Benefits of AI education: - Gets children interested in #STEM education - Improves their problem-solving and critical-thinking skills - Builds their understanding of the tech tools that’ll shape their future - Starts important conversations about the future of humanity What are educators saying: “I really love these books. I think they are absolutely beautiful and very visually engaging ways for students to learn about artificial intelligence. I like how they progress through the topic and terms related to artificial intelligence and help students to attach meaning to what they are learning by the different examples and step-by-step ways that students build their understanding through the book.” - Rachelle Dene Poth, Author of In Other Words, Unconventional, The Future is Now, and Chart a New Course. What are parents saying: “My 1st grader loves this book. She already is really interested in computers, but this book got her thinking about how we actually tell emotions. She started using her camera on her computer to record different expressions.” “My son learned ReadyAI courses before. I let his friend read AI+Me big idea 1. Surprisingly, both of them finished reading the book, with a lot of interest! I Will recommend this book for elementary school students.” “I have been looking for fun ways to introduce AI to my kid, and this definitely nailed it.”
Machine Learning: How Artificial Intelligence Learns (Fun Picture Book for K-2, AI+ME Series, Big Idea 3)
Author: ReadyAI
Publisher: Ready AI LLC
ISBN:
Category : Computers
Languages : en
Pages : 46
Book Description
Is your child interested in sci-fi, robots, or video games? Is your kid fascinated by smart home assistants and the prospect of self-driving cars? Time to turn that enthusiasm into action and engage with the exciting world of artificial intelligence! AI+Me is a series designed to introduce the 5 Big Ideas of Artificial Intelligence to young learners. Students take a deep dive into the Five Big Ideas of AI (Perception, Representation and Reasoning, Learning, Natural Interaction, and Societal Impact). This is the 3rd book in the AI+Me series focused on Learning. The series is recommended for K-2 students. Why should children be educated about AI? Learning AI opens up a world of opportunities. As the fastest growing area of computer science, AI will become the most important change force when our children grow up so it is critical they learn about it early. AI is fun! The field of AI started with scientists making computers learn to play games. AI is an incredibly fun way to introduce kids to programming and pique their interest in advanced topics like deep learning. Lastly, a topic like AI naturally opens up discussions about our humanity. In our curriculum, we dig deep into questions like “does AI positively or negatively impact society?” In doing so we aim to develop critical thinking skills and encourage students to reflect deeply. Benefits of AI education: - Gets children interested in #STEM education - Improves their problem-solving and critical-thinking skills - Builds their understanding of the tech tools that’ll shape their future - Starts important conversations about the future of humanity What are educators saying: “I really love these books. I think they are absolutely beautiful and very visually engaging ways for students to learn about artificial intelligence. I like how they progress through the topic and terms related to artificial intelligence and help students to attach meaning to what they are learning by the different examples and step-by-step ways that students build their understanding through the book.” - Rachelle Dene Poth, Author of In Other Words, Unconventional, The Future is Now, and Chart a New Course. What are parents saying: “My 1st grader loves this book. She already is really interested in computers, but this book got her thinking about how we actually tell emotions. She started using her camera on her computer to record different expressions.” “My son learned ReadyAI courses before. I let his friend read AI+Me big idea 1. Surprisingly, both of them finished reading the book, with a lot of interest! I Will recommend this book for elementary school students.” “I have been looking for fun ways to introduce AI to my kid, and this definitely nailed it.”
Publisher: Ready AI LLC
ISBN:
Category : Computers
Languages : en
Pages : 46
Book Description
Is your child interested in sci-fi, robots, or video games? Is your kid fascinated by smart home assistants and the prospect of self-driving cars? Time to turn that enthusiasm into action and engage with the exciting world of artificial intelligence! AI+Me is a series designed to introduce the 5 Big Ideas of Artificial Intelligence to young learners. Students take a deep dive into the Five Big Ideas of AI (Perception, Representation and Reasoning, Learning, Natural Interaction, and Societal Impact). This is the 3rd book in the AI+Me series focused on Learning. The series is recommended for K-2 students. Why should children be educated about AI? Learning AI opens up a world of opportunities. As the fastest growing area of computer science, AI will become the most important change force when our children grow up so it is critical they learn about it early. AI is fun! The field of AI started with scientists making computers learn to play games. AI is an incredibly fun way to introduce kids to programming and pique their interest in advanced topics like deep learning. Lastly, a topic like AI naturally opens up discussions about our humanity. In our curriculum, we dig deep into questions like “does AI positively or negatively impact society?” In doing so we aim to develop critical thinking skills and encourage students to reflect deeply. Benefits of AI education: - Gets children interested in #STEM education - Improves their problem-solving and critical-thinking skills - Builds their understanding of the tech tools that’ll shape their future - Starts important conversations about the future of humanity What are educators saying: “I really love these books. I think they are absolutely beautiful and very visually engaging ways for students to learn about artificial intelligence. I like how they progress through the topic and terms related to artificial intelligence and help students to attach meaning to what they are learning by the different examples and step-by-step ways that students build their understanding through the book.” - Rachelle Dene Poth, Author of In Other Words, Unconventional, The Future is Now, and Chart a New Course. What are parents saying: “My 1st grader loves this book. She already is really interested in computers, but this book got her thinking about how we actually tell emotions. She started using her camera on her computer to record different expressions.” “My son learned ReadyAI courses before. I let his friend read AI+Me big idea 1. Surprisingly, both of them finished reading the book, with a lot of interest! I Will recommend this book for elementary school students.” “I have been looking for fun ways to introduce AI to my kid, and this definitely nailed it.”
Artificial Intelligence & Me (Special Edition)
Author: Readyai
Publisher:
ISBN: 9781087929798
Category :
Languages : en
Pages : 146
Book Description
'Artificial Intelligence & Me' is a book that introduces & explains the 5 Big Ideas in AI to kids. It does so with the help of stories, activities, and engaging puzzles.
Publisher:
ISBN: 9781087929798
Category :
Languages : en
Pages : 146
Book Description
'Artificial Intelligence & Me' is a book that introduces & explains the 5 Big Ideas in AI to kids. It does so with the help of stories, activities, and engaging puzzles.
Machine Learning for Kids
Author: Dale Lane
Publisher: No Starch Press
ISBN: 1718500572
Category : Computers
Languages : en
Pages : 290
Book Description
A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+
Publisher: No Starch Press
ISBN: 1718500572
Category : Computers
Languages : en
Pages : 290
Book Description
A hands-on, application-based introduction to machine learning and artificial intelligence (AI) that guides young readers through creating compelling AI-powered games and applications using the Scratch programming language. Machine learning (also known as ML) is one of the building blocks of AI, or artificial intelligence. AI is based on the idea that computers can learn on their own, with your help. Machine Learning for Kids will introduce you to machine learning, painlessly. With this book and its free, Scratch-based, award-winning companion website, you'll see how easy it is to add machine learning to your own projects. You don't even need to know how to code! As you work through the book you'll discover how machine learning systems can be taught to recognize text, images, numbers, and sounds, and how to train your models to improve their accuracy. You'll turn your models into fun computer games and apps, and see what happens when they get confused by bad data. You'll build 13 projects step-by-step from the ground up, including: • Rock, Paper, Scissors game that recognizes your hand shapes • An app that recommends movies based on other movies that you like • A computer character that reacts to insults and compliments • An interactive virtual assistant (like Siri or Alexa) that obeys commands • An AI version of Pac-Man, with a smart character that knows how to avoid ghosts NOTE: This book includes a Scratch tutorial for beginners, and step-by-step instructions for every project. Ages 12+
Artificial Intelligence
Author: Melanie Mitchell
Publisher: Farrar, Straus and Giroux
ISBN: 0374715238
Category : Computers
Languages : en
Pages : 336
Book Description
Melanie Mitchell separates science fact from science fiction in this sweeping examination of the current state of AI and how it is remaking our world No recent scientific enterprise has proved as alluring, terrifying, and filled with extravagant promise and frustrating setbacks as artificial intelligence. The award-winning author Melanie Mitchell, a leading computer scientist, now reveals AI’s turbulent history and the recent spate of apparent successes, grand hopes, and emerging fears surrounding it. In Artificial Intelligence, Mitchell turns to the most urgent questions concerning AI today: How intelligent—really—are the best AI programs? How do they work? What can they actually do, and when do they fail? How humanlike do we expect them to become, and how soon do we need to worry about them surpassing us? Along the way, she introduces the dominant models of modern AI and machine learning, describing cutting-edge AI programs, their human inventors, and the historical lines of thought underpinning recent achievements. She meets with fellow experts such as Douglas Hofstadter, the cognitive scientist and Pulitzer Prize–winning author of the modern classic Gödel, Escher, Bach, who explains why he is “terrified” about the future of AI. She explores the profound disconnect between the hype and the actual achievements in AI, providing a clear sense of what the field has accomplished and how much further it has to go. Interweaving stories about the science of AI and the people behind it, Artificial Intelligence brims with clear-sighted, captivating, and accessible accounts of the most interesting and provocative modern work in the field, flavored with Mitchell’s humor and personal observations. This frank, lively book is an indispensable guide to understanding today’s AI, its quest for “human-level” intelligence, and its impact on the future for us all.
Publisher: Farrar, Straus and Giroux
ISBN: 0374715238
Category : Computers
Languages : en
Pages : 336
Book Description
Melanie Mitchell separates science fact from science fiction in this sweeping examination of the current state of AI and how it is remaking our world No recent scientific enterprise has proved as alluring, terrifying, and filled with extravagant promise and frustrating setbacks as artificial intelligence. The award-winning author Melanie Mitchell, a leading computer scientist, now reveals AI’s turbulent history and the recent spate of apparent successes, grand hopes, and emerging fears surrounding it. In Artificial Intelligence, Mitchell turns to the most urgent questions concerning AI today: How intelligent—really—are the best AI programs? How do they work? What can they actually do, and when do they fail? How humanlike do we expect them to become, and how soon do we need to worry about them surpassing us? Along the way, she introduces the dominant models of modern AI and machine learning, describing cutting-edge AI programs, their human inventors, and the historical lines of thought underpinning recent achievements. She meets with fellow experts such as Douglas Hofstadter, the cognitive scientist and Pulitzer Prize–winning author of the modern classic Gödel, Escher, Bach, who explains why he is “terrified” about the future of AI. She explores the profound disconnect between the hype and the actual achievements in AI, providing a clear sense of what the field has accomplished and how much further it has to go. Interweaving stories about the science of AI and the people behind it, Artificial Intelligence brims with clear-sighted, captivating, and accessible accounts of the most interesting and provocative modern work in the field, flavored with Mitchell’s humor and personal observations. This frank, lively book is an indispensable guide to understanding today’s AI, its quest for “human-level” intelligence, and its impact on the future for us all.
Advances in Financial Machine Learning
Author: Marcos Lopez de Prado
Publisher: John Wiley & Sons
ISBN: 1119482119
Category : Business & Economics
Languages : en
Pages : 395
Book Description
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
Publisher: John Wiley & Sons
ISBN: 1119482119
Category : Business & Economics
Languages : en
Pages : 395
Book Description
Learn to understand and implement the latest machine learning innovations to improve your investment performance Machine learning (ML) is changing virtually every aspect of our lives. Today, ML algorithms accomplish tasks that – until recently – only expert humans could perform. And finance is ripe for disruptive innovations that will transform how the following generations understand money and invest. In the book, readers will learn how to: Structure big data in a way that is amenable to ML algorithms Conduct research with ML algorithms on big data Use supercomputing methods and back test their discoveries while avoiding false positives Advances in Financial Machine Learning addresses real life problems faced by practitioners every day, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their individual setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
The Wild Robot
Author: Peter Brown
Publisher:
ISBN: 9780316581097
Category : Juvenile Fiction
Languages : en
Pages : 0
Book Description
Soon to be a DreamWorks movie, coming to theaters 9/27/24! Includes 8 pages of full color stills from the movie! Wall-E meets Hatchet in this #1 New York Times bestselling illustrated middle grade novel from Caldecott Honor winner Peter Brown Can a robot survive in the wilderness? When robot Roz opens her eyes for the first time, she discovers that she is all alone on a remote, wild island. She has no idea how she got there or what her purpose is--but she knows she needs to survive. After battling a violent storm and escaping a vicious bear attack, she realizes that her only hope for survival is to adapt to her surroundings and learn from the island's unwelcoming animal inhabitants. As Roz slowly befriends the animals, the island starts to feel like home--until, one day, the robot's mysterious past comes back to haunt her. From bestselling and award-winning author and illustrator Peter Brown comes a heartwarming and action-packed novel about what happens when nature and technology collide.
Publisher:
ISBN: 9780316581097
Category : Juvenile Fiction
Languages : en
Pages : 0
Book Description
Soon to be a DreamWorks movie, coming to theaters 9/27/24! Includes 8 pages of full color stills from the movie! Wall-E meets Hatchet in this #1 New York Times bestselling illustrated middle grade novel from Caldecott Honor winner Peter Brown Can a robot survive in the wilderness? When robot Roz opens her eyes for the first time, she discovers that she is all alone on a remote, wild island. She has no idea how she got there or what her purpose is--but she knows she needs to survive. After battling a violent storm and escaping a vicious bear attack, she realizes that her only hope for survival is to adapt to her surroundings and learn from the island's unwelcoming animal inhabitants. As Roz slowly befriends the animals, the island starts to feel like home--until, one day, the robot's mysterious past comes back to haunt her. From bestselling and award-winning author and illustrator Peter Brown comes a heartwarming and action-packed novel about what happens when nature and technology collide.
Interpretable Machine Learning
Author: Christoph Molnar
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Publisher: Lulu.com
ISBN: 0244768528
Category : Computers
Languages : en
Pages : 320
Book Description
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Understanding Machine Learning
Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415
Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Publisher: Cambridge University Press
ISBN: 1107057132
Category : Computers
Languages : en
Pages : 415
Book Description
Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Deep Learning
Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801
Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Publisher: MIT Press
ISBN: 0262337371
Category : Computers
Languages : en
Pages : 801
Book Description
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392
Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392
Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.