Low-temperature Specific Heat and Magentic Susceptibility Near the Pressure-induced Quantum Phase Transition in Ce7Ni3

Low-temperature Specific Heat and Magentic Susceptibility Near the Pressure-induced Quantum Phase Transition in Ce7Ni3 PDF Author: Kazunori Umeo
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description

Low-temperature Specific Heat and Magentic Susceptibility Near the Pressure-induced Quantum Phase Transition in Ce7Ni3

Low-temperature Specific Heat and Magentic Susceptibility Near the Pressure-induced Quantum Phase Transition in Ce7Ni3 PDF Author: Kazunori Umeo
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description


Quantum Critical Phenomena of Valence Transition

Quantum Critical Phenomena of Valence Transition PDF Author: Shinji Watanabe
Publisher: Springer Nature
ISBN: 9819935180
Category : Science
Languages : en
Pages : 220

Get Book Here

Book Description
This book comprehensively presents an unconventional quantum criticality caused by valence fluctuations, which offers theoretical understanding of unconventional Fermi-liquid properties in cerium- and ytterbium-based heavy fermion metals including CeCu2(Si,Ge)2 and CeRhIn5 under pressure, and quasicrystal β-YbAlB4 and Yb15Al34Au51. The book begins with an introduction to fundamental concepts for heavy fermion systems, valence fluctuation, and quantum phase transition, including self-consistent renormalization group theory. A subsequent chapter is devoted to a comprehensive description of the theory of the unconventional quantum criticality based on a valence transition, featuring explicit temperature dependence of various physical quantities, which allows for comparisons to relevant experiments. Lastly, it discusses how ubiquitous the valence fluctuation is, presenting candidate materials not only in heavy fermions, but also in strongly correlated electrons represented by high-Tc superconductor cuprates. Introductory chapters provide useful materials for learning fundamentals of heavy fermion systems and their theory. Further, experimental topics relevant to valence fluctuations are valuable resources for those who are new to the field to easily catch up with experimental background and facts.

ELECTRON-PHONON INTERACTION AND ITS EFFECTS IN HEAVY FERMION SYSTEMS

ELECTRON-PHONON INTERACTION AND ITS EFFECTS IN HEAVY FERMION SYSTEMS PDF Author: Dr. Jitendra Sahoo
Publisher: Newredmars Education Pvt Ltd
ISBN: 9393620075
Category : Art
Languages : en
Pages : 101

Get Book Here

Book Description
The story of heavy fermions (HF) begun with the discovery of the low temperature behaviour of CeAl3 by Andres et al. in the year 1975 took the momentum after the discovery of superconductivity in CeCu2Si2 by Steglich et al. in the year 1979 . Though HF behaviour is common in the rare-earth elements like Ce, Yb and actinides like U, it is also found to exist in some of the praseodymium (Pr), samarium (Sm) , plutonium (Pu) and more recently in neptunium (Np) systems. These compounds are characterized by the presence of partially filled f-electron bands. At high temperatures, these magnetic moments manifest themselves as a weakly interacting set of local moments of the f electrons with Curie-Weiss susceptibility that coexists with light s or d conduction electrons. But at low temperature, these f-electrons hybridize with conduction electrons near Fermi level via Kondo spin fluctuation which happens through constant exchange spin-flip transition of f-electrons and band electrons in the vicinity of Fermi level. This process leads to a strong mixing of Fermi electrons with the localized f-electrons which is manifested in a renormalization of the Fermi surface and a drastic enhancement of the effective mass of the electrons at Fermi level. Further, in HF systems, electron-phonon interaction (EPI) contributes a lot in manifestation of some of the anomalous behaviour relating to elastic constant, ultrasonic attenuation & sound velocity, anisotropic Fermi surface, Kondo volume collapse etc. In this PhD thesis book in title “Electron phonon interaction and its effect in heavy fermion (HF) systems” the author tries to put some light into the behavoiour of Electron-phonon interaction in describing some of the properties of HF systems at low temperatures. In this 1 st edition, the book has been presented in multicolour edition with profuse colour illustrations so as to increase its clarity, understand ability and legibility, especially of the figures depicted to explain the low temperature behaviour of HF systems. It is hoped that the present book will serve its purpose in attracting young researchers to the field of HF systems. It is my foremost duty to express my deep sense of gratitute to my supervisor Dr. Pratibindhya Nayak , Professor Emeritus, School of Physics, Sambalpur University, Odisha, for his able guidance at every stage of this work.. His innovative methods and inspirational guidance have largely contributed to the conceptualization of the form and content of this book. I am indebted to my family members for their constant support. I am sincerely thankful to the publisher, Newredmars Education to bring my works into light in form of a book Healthy criticism and suggestions for further improvement of the book are solicited.

Metals Abstracts

Metals Abstracts PDF Author:
Publisher:
ISBN:
Category : Metallurgy
Languages : en
Pages : 1628

Get Book Here

Book Description


Low-temperature Specific Heat and Magnetic Susceptibility Near the Pressure-induced Quantum Phase Transition in Ce--Ni3

Low-temperature Specific Heat and Magnetic Susceptibility Near the Pressure-induced Quantum Phase Transition in Ce--Ni3 PDF Author: Kazunori Umeo
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description


Journal of the Physical Society of Japan

Journal of the Physical Society of Japan PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1304

Get Book Here

Book Description


Metals Abstracts Index

Metals Abstracts Index PDF Author:
Publisher:
ISBN:
Category : Metallurgy
Languages : en
Pages : 1622

Get Book Here

Book Description


Pressure Induced Quantum Phase Transitions in Metallic Oxides and Pnictides

Pressure Induced Quantum Phase Transitions in Metallic Oxides and Pnictides PDF Author: Fazel Fallah Tafti
Publisher:
ISBN: 9780494781777
Category :
Languages : en
Pages : 330

Get Book Here

Book Description
Quantum phase transitions occur as a result of competing ground states. The focus of the present work is to understand quantum criticality and its consequences when the competition is between insulating and metallic ground states. Metal-insulator transitions are studied by means of electronic transport measurements and quantum critical points are approached by applying hydrostatic pressure in two different compounds namely Eu2Ir 22O7 and FeCrAs. The former is a ternary metal oxide and the latter is a ternary metal pnictide.Eu2Ir22O7 is a ternary metal oxide and a member of the pyrochlore iridate family. Resistivity measurements under pressure in moissanite anvil cells show the evolution of the ground state of the system from insulating to metallic. The quantum phase transition at Pc ∼ 6 GPa appears to be continuous. A remarkable correspondence is revealed between the effect of the hydrostatic pressure on Eu2Ir22O7 and the effect of chemical pressure by changing the R size in the R2Ir2O7 series. This suggests that in both cases the tuning parameter controls the t2g bandwidth of the iridium 5d electrons. Moreover, hydrostatic pressure unveils a curious cross-over from incoherent to conventional metallic behaviour at a T* > 150 K in the neighbourhood of Pc, suggesting a connection between the high and low temperature phases. The possibility of a topological semi-metallic ground state, predicted in recent theoretical studies, is explained.A major component of this work was the development of the ultra-high pressure measurements by means of Anvil cells. A novel design is introduced which minimizes the alignment accessory components hence, making the cell more robust and easier to use.FeCrAs is a ternary metal pnictide with Fermi liquid specific heat and susceptibility behaviour but non-metallic non-Fermi liquid resistivity behaviour. Characteristic properties of the compound are explained and compared to those of superconducting pnictides. Antiferromagnetic (AFM) order sets in at ∼125 K with the magnetic moments residing on the Cr site. Pressure measurements are carried out in moissanite and diamond anvil cells in order to suppress the AFM order and resolve the underlying electronic transport properties. While AFM order is destroyed by pressure, the non-metallic non-Fermi liquid behaviour is shown to be robust against pressure.

Pressure Induced Quantum Phase Transitions in Metallics Oxides and Pnictides

Pressure Induced Quantum Phase Transitions in Metallics Oxides and Pnictides PDF Author: Fazel Fallah Tafti
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Superconductivity, Magnetism, Quantum Criticality, And Hidden Order In Quantum Materials

Superconductivity, Magnetism, Quantum Criticality, And Hidden Order In Quantum Materials PDF Author: Dom Lal Kunwar
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
The heavy fermions (HF) are strongly correlated electron systems consisting of intermetallic compounds of lanthanides and actinides ions with f -electrons unfilled shells. These systems are very rich in physics and the interplay between competing interactions results in various interesting physical phenomena such as heavy fermion behavior, unconventional superconductivity, non-Fermi-liquid behavior, coexistence of superconductivity and magnetism, and quantum criticality. The origin of such phenomena comes from the interaction of itinerant conduction states with the partially filled 4f - or 5f -electron states of rare earth elements. The study of such important physical phenomena can be possible by tuning the system using nonthermal control parameters, such as chemical composition, magnetic field, and applied pressure. So, studying the chemical pressure effect on heavy fermion systems with or without magnetic field is an intriguing idea to construct various phase diagrams and study their phase transitions. We performed heat capacity (HC), magnetoresistance (MR), and resistivity measurements on the Ce-based 115 and U-based 122 heavy fermion materials at low temperatures. We studied the nature of the quantum critical point, second-order phase transition, and the possible interplay between superconductivity and magnetism. First, we were motivated by the possibility of observing the coexistence of magnetism and unconventional superconductivity in the heavy fermion Ce1-xSmxCoIn5 alloys. We performed specific heat, MR, and resistivity measurements in different magnetic fields. We investigated how the samarium substitution on the cerium site affects the magnetic-field-tuned quantum criticality of stoichiometric CeCoIn5. We have observed Fermi-liquid to non-Fermi-liquid crossovers in the temperature dependence of the electronic specific heat and resistivity at higher external magnetic fields. We obtained the magnetic-field-induced quantum critical point (HQCP) by extrapolating the crossover temperature to zero temperature. Furthermore, we performed a scaling analysis of the electronic specific heat and confirmed the existence of the QCP. According to our findings, the magnitude of (HQCP) decreases as the samarium content rises and ultimately becomes zero. The electronic specific heat and resistivity data reveal a zero-field QCP for xcr = 0.15, which falls inside the antiferromagnetic and superconducting coexistence region. Next, we performed measurements of the heat capacity as a function of temperature in a single crystals URu2-xOsxSi2. Our experimental results show that the critical temperature of the second-order phase transition increases while the value of the Sommerfeld coefficient in the ordered state decreases with an increase in osmium concentration. We also observed the increase in the magnitude of the heat capacity at the critical temperature and a broadening of the critical fluctuations region with an increase in Os concentration. We analyze the experimental data using the Haule- Kotliar model, which identifies the 'hidden order' transition in the parent material URu2Si2 as a transition to a state with nonzero hexadecapolar moment. We showed that our experimental results are consistent with this model. In conclusion, we studied the interplay between superconductivity and magnetism in Ce based 115 and U based 122 single crystal alloys using heat capacity, magnetoresistivity, and resistivity measurements in both cryogenic systems including He-4 and He-3. The understating of various phenomena in these heavy fermions could be helpful in developing higher transition temperature superconductors, energy storage devices, quantum computers, and memory devices in the future.