Local $L^p$-Brunn-Minkowski Inequalities for $p

Local $L^p$-Brunn-Minkowski Inequalities for $p PDF Author: Alexander V. Kolesnikov
Publisher: American Mathematical Society
ISBN: 1470451603
Category : Mathematics
Languages : en
Pages : 78

Get Book Here

Book Description
View the abstract.

Local $L^p$-Brunn-Minkowski Inequalities for $p

Local $L^p$-Brunn-Minkowski Inequalities for $p PDF Author: Alexander V. Kolesnikov
Publisher: American Mathematical Society
ISBN: 1470451603
Category : Mathematics
Languages : en
Pages : 78

Get Book Here

Book Description
View the abstract.

Maximal Functions, Littlewood–Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-Parameter Flag Setting

Maximal Functions, Littlewood–Paley Theory, Riesz Transforms and Atomic Decomposition in the Multi-Parameter Flag Setting PDF Author: Yongsheng Han
Publisher: American Mathematical Society
ISBN: 1470453452
Category : Mathematics
Languages : en
Pages : 118

Get Book Here

Book Description
View the abstract.

Convex Bodies: The Brunn–Minkowski Theory

Convex Bodies: The Brunn–Minkowski Theory PDF Author: Rolf Schneider
Publisher: Cambridge University Press
ISBN: 1107601010
Category : Mathematics
Languages : en
Pages : 759

Get Book Here

Book Description
A complete presentation of a central part of convex geometry, from basics for beginners, to the exposition of current research.

Theory of Convex Bodies

Theory of Convex Bodies PDF Author: Tommy Bonnesen
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 192

Get Book Here

Book Description


Geometric Aspects of Functional Analysis

Geometric Aspects of Functional Analysis PDF Author: Ronen Eldan
Publisher: Springer Nature
ISBN: 3031263006
Category : Mathematics
Languages : en
Pages : 443

Get Book Here

Book Description
This book reflects general trends in the study of geometric aspects of functional analysis, understood in a broad sense. A classical theme in the local theory of Banach spaces is the study of probability measures in high dimension and the concentration of measure phenomenon. Here this phenomenon is approached from different angles, including through analysis on the Hamming cube, and via quantitative estimates in the Central Limit Theorem under thin-shell and related assumptions. Classical convexity theory plays a central role in this volume, as well as the study of geometric inequalities. These inequalities, which are somewhat in spirit of the Brunn-Minkowski inequality, in turn shed light on convexity and on the geometry of Euclidean space. Probability measures with convexity or curvature properties, such as log-concave distributions, occupy an equally central role and arise in the study of Gaussian measures and non-trivial properties of the heat flow in Euclidean spaces. Also discussed are interactions of this circle of ideas with linear programming and sampling algorithms, including the solution of a question in online learning algorithms using a classical convexity construction from the 19th century.

Asymptotic Geometric Analysis, Part I

Asymptotic Geometric Analysis, Part I PDF Author: Shiri Artstein-Avidan
Publisher: American Mathematical Soc.
ISBN: 1470421933
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomenon", one of the most powerful tools of the theory, responsible for many counterintuitive results. A central theme in this book is the interaction of randomness and pattern. At first glance, life in high dimension seems to mean the existence of multiple "possibilities", so one may expect an increase in the diversity and complexity as dimension increases. However, the concentration of measure and effects caused by convexity show that this diversity is compensated and order and patterns are created for arbitrary convex bodies in the mixture caused by high dimensionality. The book is intended for graduate students and researchers who want to learn about this exciting subject. Among the topics covered in the book are convexity, concentration phenomena, covering numbers, Dvoretzky-type theorems, volume distribution in convex bodies, and more.

Fourier Analysis in Convex Geometry

Fourier Analysis in Convex Geometry PDF Author: Alexander Koldobsky
Publisher: American Mathematical Soc.
ISBN: 1470419521
Category : Mathematics
Languages : en
Pages : 178

Get Book Here

Book Description
The study of the geometry of convex bodies based on information about sections and projections of these bodies has important applications in many areas of mathematics and science. In this book, a new Fourier analysis approach is discussed. The idea is to express certain geometric properties of bodies in terms of Fourier analysis and to use harmonic analysis methods to solve geometric problems. One of the results discussed in the book is Ball's theorem, establishing the exact upper bound for the -dimensional volume of hyperplane sections of the -dimensional unit cube (it is for each ). Another is the Busemann-Petty problem: if and are two convex origin-symmetric -dimensional bodies and the -dimensional volume of each central hyperplane section of is less than the -dimensional volume of the corresponding section of , is it true that the -dimensional volume of is less than the volume of ? (The answer is positive for and negative for .) The book is suitable for graduate students and researchers interested in geometry, harmonic and functional analysis, and probability. Prerequisites for reading this book include basic real, complex, and functional analysis.

Convex Geometry

Convex Geometry PDF Author: Shiri Artstein-Avidan
Publisher: Springer Nature
ISBN: 3031378830
Category : Mathematics
Languages : en
Pages : 304

Get Book Here

Book Description
This book collects the lecture notes of the Summer School on Convex Geometry, held in Cetraro, Italy, from August 30th to September 3rd, 2021. Convex geometry is a very active area in mathematics with a solid tradition and a promising future. Its main objects of study are convex bodies, that is, compact and convex subsets of n-dimensional Euclidean space. The so-called Brunn--Minkowski theory currently represents the central part of convex geometry. The Summer School provided an introduction to various aspects of convex geometry: The theory of valuations, including its recent developments concerning valuations on function spaces; geometric and analytic inequalities, including those which come from the Lp Brunn--Minkowski theory; geometric and analytic notions of duality, along with their interplay with mass transportation and concentration phenomena; symmetrizations, which provide one of the main tools to many variational problems (not only in convex geometry). Each of these parts is represented by one of the courses given during the Summer School and corresponds to one of the chapters of the present volume. The initial chapter contains some basic notions in convex geometry, which form a common background for the subsequent chapters. The material of this book is essentially self-contained and, like the Summer School, is addressed to PhD and post-doctoral students and to all researchers approaching convex geometry for the first time.

Gradient Flows

Gradient Flows PDF Author: Luigi Ambrosio
Publisher: Springer Science & Business Media
ISBN: 376438722X
Category : Mathematics
Languages : en
Pages : 333

Get Book Here

Book Description
The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.

The Mathematical Legacy of Victor Lomonosov

The Mathematical Legacy of Victor Lomonosov PDF Author: Richard M. Aron
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110656752
Category : Mathematics
Languages : en
Pages : 364

Get Book Here

Book Description
The fundamental contributions made by the late Victor Lomonosov in several areas of analysis are revisited in this book, in particular, by presenting new results and future directions from world-recognized specialists in the field. The invariant subspace problem, Burnside’s theorem, and the Bishop-Phelps theorem are discussed in detail. This volume is an essential reference to both researchers and graduate students in mathematical analysis.