Author: Xiao-Jun Yang
Publisher: Academic Press
ISBN: 0128040327
Category : Mathematics
Languages : en
Pages : 263
Book Description
Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms. - Provides applications of local fractional Fourier Series - Discusses definitions for local fractional Laplace transforms - Explains local fractional Laplace transforms coupled with analytical methods
Local Fractional Integral Transforms and Their Applications
Author: Xiao-Jun Yang
Publisher: Academic Press
ISBN: 0128040327
Category : Mathematics
Languages : en
Pages : 263
Book Description
Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms. - Provides applications of local fractional Fourier Series - Discusses definitions for local fractional Laplace transforms - Explains local fractional Laplace transforms coupled with analytical methods
Publisher: Academic Press
ISBN: 0128040327
Category : Mathematics
Languages : en
Pages : 263
Book Description
Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms. - Provides applications of local fractional Fourier Series - Discusses definitions for local fractional Laplace transforms - Explains local fractional Laplace transforms coupled with analytical methods
Methods of Mathematical Modelling and Computation for Complex Systems
Author: Jagdev Singh
Publisher: Springer Nature
ISBN: 3030771695
Category : Technology & Engineering
Languages : en
Pages : 433
Book Description
This book contains several contemporary topics in the areas of mathematical modelling and computation for complex systems. The readers find several new mathematical methods, mathematical models and computational techniques having significant relevance in studying various complex systems. The chapters aim to enrich the understanding of topics presented by carefully discussing the associated problems and issues, possible solutions and their applications or relevance in other scientific areas of study and research. The book is a valuable resource for graduate students, researchers and educators in understanding and studying various new aspects associated with complex systems. Key Feature • The chapters include theory and application in a mix and balanced way. • Readers find reasonable details of developments concerning a topic included in this book. • The text is emphasized to present in self-contained manner with inclusion of new research problems and questions.
Publisher: Springer Nature
ISBN: 3030771695
Category : Technology & Engineering
Languages : en
Pages : 433
Book Description
This book contains several contemporary topics in the areas of mathematical modelling and computation for complex systems. The readers find several new mathematical methods, mathematical models and computational techniques having significant relevance in studying various complex systems. The chapters aim to enrich the understanding of topics presented by carefully discussing the associated problems and issues, possible solutions and their applications or relevance in other scientific areas of study and research. The book is a valuable resource for graduate students, researchers and educators in understanding and studying various new aspects associated with complex systems. Key Feature • The chapters include theory and application in a mix and balanced way. • Readers find reasonable details of developments concerning a topic included in this book. • The text is emphasized to present in self-contained manner with inclusion of new research problems and questions.
Mathematical Methods in Engineering
Author: Kenan Taş
Publisher: Springer
ISBN: 331990972X
Category : Technology & Engineering
Languages : en
Pages : 266
Book Description
This book presents recent developments in nonlinear dynamics with an emphasis on complex systems. The volume illustrates new methods to characterize the solutions of nonlinear dynamics associated with complex systems. This book contains the following topics: new solutions of the functional equations, optimization algorithm for traveling salesman problem, fractals, control, fractional calculus models, fractional discretization, local fractional partial differential equations and their applications, and solutions of fractional kinetic equations.
Publisher: Springer
ISBN: 331990972X
Category : Technology & Engineering
Languages : en
Pages : 266
Book Description
This book presents recent developments in nonlinear dynamics with an emphasis on complex systems. The volume illustrates new methods to characterize the solutions of nonlinear dynamics associated with complex systems. This book contains the following topics: new solutions of the functional equations, optimization algorithm for traveling salesman problem, fractals, control, fractional calculus models, fractional discretization, local fractional partial differential equations and their applications, and solutions of fractional kinetic equations.
Applications Of Fractional Calculus In Physics
Author: Rudolf Hilfer
Publisher: World Scientific
ISBN: 9814496200
Category : Science
Languages : en
Pages : 473
Book Description
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.
Publisher: World Scientific
ISBN: 9814496200
Category : Science
Languages : en
Pages : 473
Book Description
Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.
Non-Fourier Heat Conduction
Author: Alexander I. Zhmakin
Publisher: Springer Nature
ISBN: 3031259734
Category : Science
Languages : en
Pages : 419
Book Description
This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.
Publisher: Springer Nature
ISBN: 3031259734
Category : Science
Languages : en
Pages : 419
Book Description
This book presents a broad and well-structured overview of various non-Fourier heat conduction models. The classical Fourier heat conduction model is valid for most macroscopic problems. However, it fails when the wave nature of the heat propagation becomes dominant and memory or non-local spatial effects become significant; e.g., during ultrafast heating, heat transfer at the nanoscale, in granular and porous materials, at extremely high values of the heat flux, or in heat transfer in biological tissues. The book looks at numerous non-Fourier heat conduction models that incorporate time non-locality for materials with memory, such as hereditary materials, including fractional hereditary materials, and/or spatial non-locality, i.e. materials with a non-homogeneous inner structure. Beginning with an introduction to classical transport theory, including phase-lag, phonon, and thermomass models, the book then looks at various aspects of relativistic and quantum transport, including approaches based on the Landauer formalism as well as the Green-Kubo theory of linear response. Featuring an appendix that provides an introduction to methods in fractional calculus, this book is a valuable resource for any researcher interested in theoretical and numerical aspects of complex, non-trivial heat conduction problems.
Nonlinear Differential Equations in Physics
Author: Santanu Saha Ray
Publisher: Springer Nature
ISBN: 9811516561
Category : Mathematics
Languages : en
Pages : 409
Book Description
This book discusses various novel analytical and numerical methods for solving partial and fractional differential equations. Moreover, it presents selected numerical methods for solving stochastic point kinetic equations in nuclear reactor dynamics by using Euler–Maruyama and strong-order Taylor numerical methods. The book also shows how to arrive at new, exact solutions to various fractional differential equations, such as the time-fractional Burgers–Hopf equation, the (3+1)-dimensional time-fractional Khokhlov–Zabolotskaya–Kuznetsov equation, (3+1)-dimensional time-fractional KdV–Khokhlov–Zabolotskaya–Kuznetsov equation, fractional (2+1)-dimensional Davey–Stewartson equation, and integrable Davey–Stewartson-type equation. Many of the methods discussed are analytical–numerical, namely the modified decomposition method, a new two-step Adomian decomposition method, new approach to the Adomian decomposition method, modified homotopy analysis method with Fourier transform, modified fractional reduced differential transform method (MFRDTM), coupled fractional reduced differential transform method (CFRDTM), optimal homotopy asymptotic method, first integral method, and a solution procedure based on Haar wavelets and the operational matrices with function approximation. The book proposes for the first time a generalized order operational matrix of Haar wavelets, as well as new techniques (MFRDTM and CFRDTM) for solving fractional differential equations. Numerical methods used to solve stochastic point kinetic equations, like the Wiener process, Euler–Maruyama, and order 1.5 strong Taylor methods, are also discussed.
Publisher: Springer Nature
ISBN: 9811516561
Category : Mathematics
Languages : en
Pages : 409
Book Description
This book discusses various novel analytical and numerical methods for solving partial and fractional differential equations. Moreover, it presents selected numerical methods for solving stochastic point kinetic equations in nuclear reactor dynamics by using Euler–Maruyama and strong-order Taylor numerical methods. The book also shows how to arrive at new, exact solutions to various fractional differential equations, such as the time-fractional Burgers–Hopf equation, the (3+1)-dimensional time-fractional Khokhlov–Zabolotskaya–Kuznetsov equation, (3+1)-dimensional time-fractional KdV–Khokhlov–Zabolotskaya–Kuznetsov equation, fractional (2+1)-dimensional Davey–Stewartson equation, and integrable Davey–Stewartson-type equation. Many of the methods discussed are analytical–numerical, namely the modified decomposition method, a new two-step Adomian decomposition method, new approach to the Adomian decomposition method, modified homotopy analysis method with Fourier transform, modified fractional reduced differential transform method (MFRDTM), coupled fractional reduced differential transform method (CFRDTM), optimal homotopy asymptotic method, first integral method, and a solution procedure based on Haar wavelets and the operational matrices with function approximation. The book proposes for the first time a generalized order operational matrix of Haar wavelets, as well as new techniques (MFRDTM and CFRDTM) for solving fractional differential equations. Numerical methods used to solve stochastic point kinetic equations, like the Wiener process, Euler–Maruyama, and order 1.5 strong Taylor methods, are also discussed.
Advance Numerical Techniques to Solve Linear and Nonlinear Differential Equations
Author: Geeta Arora
Publisher: CRC Press
ISBN: 1003811027
Category : Mathematics
Languages : en
Pages : 177
Book Description
Real-world issues can be translated into the language and concepts of mathematics with the use of mathematical models. Models guided by differential equations with intuitive solutions can be used throughout engineering and the sciences. Almost any changing system may be described by a set of differential equations. They may be found just about anywhere you look in fields including physics, engineering, economics, sociology, biology, business, healthcare, etc. The nature of these equations has been investigated by several mathematicians over the course of hundreds of years and, consequently, numerous effective methods for solving them have been created. It is often impractical to find a purely analytical solution to a system described by a differential equation because either the system itself is too complex or the system being described is too vast. Numerical approaches and computer simulations are especially helpful in such systems. The content provided in this book involves real-world examples, explores research challenges in numerical treatment, and demonstrates how to create new numerical methods for resolving problems. Theories and practical applications in the sciences and engineering are also discussed. Students of engineering and applied mathematics, as well as researchers and engineers who use computers to solve problems numerically or oversee those who do, will find this book focusing on advance numerical techniques to solve linear and nonlinear differential equations useful.
Publisher: CRC Press
ISBN: 1003811027
Category : Mathematics
Languages : en
Pages : 177
Book Description
Real-world issues can be translated into the language and concepts of mathematics with the use of mathematical models. Models guided by differential equations with intuitive solutions can be used throughout engineering and the sciences. Almost any changing system may be described by a set of differential equations. They may be found just about anywhere you look in fields including physics, engineering, economics, sociology, biology, business, healthcare, etc. The nature of these equations has been investigated by several mathematicians over the course of hundreds of years and, consequently, numerous effective methods for solving them have been created. It is often impractical to find a purely analytical solution to a system described by a differential equation because either the system itself is too complex or the system being described is too vast. Numerical approaches and computer simulations are especially helpful in such systems. The content provided in this book involves real-world examples, explores research challenges in numerical treatment, and demonstrates how to create new numerical methods for resolving problems. Theories and practical applications in the sciences and engineering are also discussed. Students of engineering and applied mathematics, as well as researchers and engineers who use computers to solve problems numerically or oversee those who do, will find this book focusing on advance numerical techniques to solve linear and nonlinear differential equations useful.
Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations
Author: Santanu Saha Ray
Publisher: CRC Press
ISBN: 1351682210
Category : Mathematics
Languages : en
Pages : 251
Book Description
The main focus of the book is to implement wavelet based transform methods for solving problems of fractional order partial differential equations arising in modelling real physical phenomena. It explores analytical and numerical approximate solution obtained by wavelet methods for both classical and fractional order partial differential equations.
Publisher: CRC Press
ISBN: 1351682210
Category : Mathematics
Languages : en
Pages : 251
Book Description
The main focus of the book is to implement wavelet based transform methods for solving problems of fractional order partial differential equations arising in modelling real physical phenomena. It explores analytical and numerical approximate solution obtained by wavelet methods for both classical and fractional order partial differential equations.
Fractional Dynamics
Author: Carlo Cattani
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110472090
Category : Mathematics
Languages : en
Pages : 392
Book Description
The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110472090
Category : Mathematics
Languages : en
Pages : 392
Book Description
The book is devoted to recent developments in the theory of fractional calculus and its applications. Particular attention is paid to the applicability of this currently popular research field in various branches of pure and applied mathematics. In particular, the book focuses on the more recent results in mathematical physics, engineering applications, theoretical and applied physics as quantum mechanics, signal analysis, and in those relevant research fields where nonlinear dynamics occurs and several tools of nonlinear analysis are required. Dynamical processes and dynamical systems of fractional order attract researchers from many areas of sciences and technologies, ranging from mathematics and physics to computer science.
Basic Theory
Author: Anatoly Kochubei
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110571625
Category : Mathematics
Languages : en
Pages : 490
Book Description
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This first volume collects authoritative chapters covering the mathematical theory of fractional calculus, including fractional-order operators, integral transforms and equations, special functions, calculus of variations, and probabilistic and other aspects.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110571625
Category : Mathematics
Languages : en
Pages : 490
Book Description
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This first volume collects authoritative chapters covering the mathematical theory of fractional calculus, including fractional-order operators, integral transforms and equations, special functions, calculus of variations, and probabilistic and other aspects.