Author: A. Donald Keedwell
Publisher: Elsevier
ISBN: 0444635580
Category : Mathematics
Languages : en
Pages : 443
Book Description
Latin Squares and Their Applications, Second edition offers a long-awaited update and reissue of this seminal account of the subject. The revision retains foundational, original material from the frequently-cited 1974 volume but is completely updated throughout. As with the earlier version, the author hopes to take the reader 'from the beginnings of the subject to the frontiers of research'. By omitting a few topics which are no longer of current interest, the book expands upon active and emerging areas. Also, the present state of knowledge regarding the 73 then-unsolved problems given at the end of the first edition is discussed and commented upon. In addition, a number of new unsolved problems are proposed. Using an engaging narrative style, this book provides thorough coverage of most parts of the subject, one of the oldest of all discrete mathematical structures and still one of the most relevant. However, in consequence of the huge expansion of the subject in the past 40 years, some topics have had to be omitted in order to keep the book of a reasonable length. Latin squares, or sets of mutually orthogonal latin squares (MOLS), encode the incidence structure of finite geometries; they prescribe the order in which to apply the different treatments in designing an experiment in order to permit effective statistical analysis of the results; they produce optimal density error-correcting codes; they encapsulate the structure of finite groups and of more general algebraic objects known as quasigroups. As regards more recreational aspects of the subject, latin squares provide the most effective and efficient designs for many kinds of games tournaments and they are the templates for Sudoku puzzles. Also, they provide a number of ways of constructing magic squares, both simple magic squares and also ones with additional properties. - Retains the organization and updated foundational material from the original edition - Explores current and emerging research topics - Includes the original 73 'Unsolved Problems' with the current state of knowledge regarding them, as well as new Unsolved Problems for further study
Latin Squares and Their Applications
Author: A. Donald Keedwell
Publisher: Elsevier
ISBN: 0444635580
Category : Mathematics
Languages : en
Pages : 443
Book Description
Latin Squares and Their Applications, Second edition offers a long-awaited update and reissue of this seminal account of the subject. The revision retains foundational, original material from the frequently-cited 1974 volume but is completely updated throughout. As with the earlier version, the author hopes to take the reader 'from the beginnings of the subject to the frontiers of research'. By omitting a few topics which are no longer of current interest, the book expands upon active and emerging areas. Also, the present state of knowledge regarding the 73 then-unsolved problems given at the end of the first edition is discussed and commented upon. In addition, a number of new unsolved problems are proposed. Using an engaging narrative style, this book provides thorough coverage of most parts of the subject, one of the oldest of all discrete mathematical structures and still one of the most relevant. However, in consequence of the huge expansion of the subject in the past 40 years, some topics have had to be omitted in order to keep the book of a reasonable length. Latin squares, or sets of mutually orthogonal latin squares (MOLS), encode the incidence structure of finite geometries; they prescribe the order in which to apply the different treatments in designing an experiment in order to permit effective statistical analysis of the results; they produce optimal density error-correcting codes; they encapsulate the structure of finite groups and of more general algebraic objects known as quasigroups. As regards more recreational aspects of the subject, latin squares provide the most effective and efficient designs for many kinds of games tournaments and they are the templates for Sudoku puzzles. Also, they provide a number of ways of constructing magic squares, both simple magic squares and also ones with additional properties. - Retains the organization and updated foundational material from the original edition - Explores current and emerging research topics - Includes the original 73 'Unsolved Problems' with the current state of knowledge regarding them, as well as new Unsolved Problems for further study
Publisher: Elsevier
ISBN: 0444635580
Category : Mathematics
Languages : en
Pages : 443
Book Description
Latin Squares and Their Applications, Second edition offers a long-awaited update and reissue of this seminal account of the subject. The revision retains foundational, original material from the frequently-cited 1974 volume but is completely updated throughout. As with the earlier version, the author hopes to take the reader 'from the beginnings of the subject to the frontiers of research'. By omitting a few topics which are no longer of current interest, the book expands upon active and emerging areas. Also, the present state of knowledge regarding the 73 then-unsolved problems given at the end of the first edition is discussed and commented upon. In addition, a number of new unsolved problems are proposed. Using an engaging narrative style, this book provides thorough coverage of most parts of the subject, one of the oldest of all discrete mathematical structures and still one of the most relevant. However, in consequence of the huge expansion of the subject in the past 40 years, some topics have had to be omitted in order to keep the book of a reasonable length. Latin squares, or sets of mutually orthogonal latin squares (MOLS), encode the incidence structure of finite geometries; they prescribe the order in which to apply the different treatments in designing an experiment in order to permit effective statistical analysis of the results; they produce optimal density error-correcting codes; they encapsulate the structure of finite groups and of more general algebraic objects known as quasigroups. As regards more recreational aspects of the subject, latin squares provide the most effective and efficient designs for many kinds of games tournaments and they are the templates for Sudoku puzzles. Also, they provide a number of ways of constructing magic squares, both simple magic squares and also ones with additional properties. - Retains the organization and updated foundational material from the original edition - Explores current and emerging research topics - Includes the original 73 'Unsolved Problems' with the current state of knowledge regarding them, as well as new Unsolved Problems for further study
Latin Squares
Author: József Dénes
Publisher: Elsevier
ISBN: 0080867863
Category : Mathematics
Languages : en
Pages : 469
Book Description
In 1974 the editors of the present volume published a well-received book entitled ``Latin Squares and their Applications''. It included a list of 73 unsolved problems of which about 20 have been completely solved in the intervening period and about 10 more have been partially solved. The present work comprises six contributed chapters and also six further chapters written by the editors themselves. As well as discussing the advances which have been made in the subject matter of most of the chapters of the earlier book, this new book contains one chapter which deals with a subject (r-orthogonal latin squares) which did not exist when the earlier book was written.The success of the former book is shown by the two or three hundred published papers which deal with questions raised by it.
Publisher: Elsevier
ISBN: 0080867863
Category : Mathematics
Languages : en
Pages : 469
Book Description
In 1974 the editors of the present volume published a well-received book entitled ``Latin Squares and their Applications''. It included a list of 73 unsolved problems of which about 20 have been completely solved in the intervening period and about 10 more have been partially solved. The present work comprises six contributed chapters and also six further chapters written by the editors themselves. As well as discussing the advances which have been made in the subject matter of most of the chapters of the earlier book, this new book contains one chapter which deals with a subject (r-orthogonal latin squares) which did not exist when the earlier book was written.The success of the former book is shown by the two or three hundred published papers which deal with questions raised by it.
Discrete Mathematics Using Latin Squares
Author: Charles F. Laywine
Publisher: John Wiley & Sons
ISBN: 9780471240648
Category : Mathematics
Languages : en
Pages : 336
Book Description
Over the past two decades, research in the theory of Latin Squares has been growing at a fast pace, and new significant developments have taken place. This book offers a unique approach to various areas of discrete mathematics through the use of Latin Squares.
Publisher: John Wiley & Sons
ISBN: 9780471240648
Category : Mathematics
Languages : en
Pages : 336
Book Description
Over the past two decades, research in the theory of Latin Squares has been growing at a fast pace, and new significant developments have taken place. This book offers a unique approach to various areas of discrete mathematics through the use of Latin Squares.
Combinatorial Methods with Computer Applications
Author: Jonathan L. Gross
Publisher: CRC Press
ISBN: 1584887443
Category : Computers
Languages : en
Pages : 664
Book Description
This combinatorics text provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. It presents the computer and software algorithms in pseudo-code and incorporates definitions, theorems, proofs, examples, and nearly 300 illustrations as pedagogical elements of the exposition. Numerous problems, solutions, and hints reinforce basic skills and assist with creative problem solving. The author also offers a website with extensive graph theory informational resources as well as a computational engine to help with calculations for some of the exercises.
Publisher: CRC Press
ISBN: 1584887443
Category : Computers
Languages : en
Pages : 664
Book Description
This combinatorics text provides in-depth coverage of recurrences, generating functions, partitions, and permutations, along with some of the most interesting graph and network topics, design constructions, and finite geometries. It presents the computer and software algorithms in pseudo-code and incorporates definitions, theorems, proofs, examples, and nearly 300 illustrations as pedagogical elements of the exposition. Numerous problems, solutions, and hints reinforce basic skills and assist with creative problem solving. The author also offers a website with extensive graph theory informational resources as well as a computational engine to help with calculations for some of the exercises.
Design Theory
Author: Charles C. Lindner
Publisher: CRC Press
ISBN: 135160645X
Category : Mathematics
Languages : en
Pages : 265
Book Description
Design Theory, Second Edition presents some of the most important techniques used for constructing combinatorial designs. It augments the descriptions of the constructions with many figures to help students understand and enjoy this branch of mathematics. This edition now offers a thorough development of the embedding of Latin squares and combinatorial designs. It also presents some pure mathematical ideas, including connections between universal algebra and graph designs. The authors focus on several basic designs, including Steiner triple systems, Latin squares, and finite projective and affine planes. They produce these designs using flexible constructions and then add interesting properties that may be required, such as resolvability, embeddings, and orthogonality. The authors also construct more complicated structures, such as Steiner quadruple systems. By providing both classical and state-of-the-art construction techniques, this book enables students to produce many other types of designs.
Publisher: CRC Press
ISBN: 135160645X
Category : Mathematics
Languages : en
Pages : 265
Book Description
Design Theory, Second Edition presents some of the most important techniques used for constructing combinatorial designs. It augments the descriptions of the constructions with many figures to help students understand and enjoy this branch of mathematics. This edition now offers a thorough development of the embedding of Latin squares and combinatorial designs. It also presents some pure mathematical ideas, including connections between universal algebra and graph designs. The authors focus on several basic designs, including Steiner triple systems, Latin squares, and finite projective and affine planes. They produce these designs using flexible constructions and then add interesting properties that may be required, such as resolvability, embeddings, and orthogonality. The authors also construct more complicated structures, such as Steiner quadruple systems. By providing both classical and state-of-the-art construction techniques, this book enables students to produce many other types of designs.
Abstract Algebra
Author: Derek J.S. Robinson
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110340879
Category : Mathematics
Languages : en
Pages : 348
Book Description
This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader's skill and progress. The book should be suitable for students in the third or fourth year of study at a North American university or in the second or third year at a university in Europe, and should ease the transition to (post)graduate studies.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110340879
Category : Mathematics
Languages : en
Pages : 348
Book Description
This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader's skill and progress. The book should be suitable for students in the third or fourth year of study at a North American university or in the second or third year at a university in Europe, and should ease the transition to (post)graduate studies.
Combinatorics
Author: Robin Wilson
Publisher: Oxford University Press
ISBN: 0191035254
Category : Mathematics
Languages : en
Pages : 201
Book Description
How many possible sudoku puzzles are there? In the lottery, what is the chance that two winning balls have consecutive numbers? Who invented Pascal's triangle? (it was not Pascal) Combinatorics, the branch of mathematics concerned with selecting, arranging, and listing or counting collections of objects, works to answer all these questions. Dating back some 3000 years, and initially consisting mainly of the study of permutations and combinations, its scope has broadened to include topics such as graph theory, partitions of numbers, block designs, design of codes, and latin squares. In this Very Short Introduction Robin Wilson gives an overview of the field and its applications in mathematics and computer theory, considering problems from the shortest routes covering certain stops to the minimum number of colours needed to colour a map with different colours for neighbouring countries. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Publisher: Oxford University Press
ISBN: 0191035254
Category : Mathematics
Languages : en
Pages : 201
Book Description
How many possible sudoku puzzles are there? In the lottery, what is the chance that two winning balls have consecutive numbers? Who invented Pascal's triangle? (it was not Pascal) Combinatorics, the branch of mathematics concerned with selecting, arranging, and listing or counting collections of objects, works to answer all these questions. Dating back some 3000 years, and initially consisting mainly of the study of permutations and combinations, its scope has broadened to include topics such as graph theory, partitions of numbers, block designs, design of codes, and latin squares. In this Very Short Introduction Robin Wilson gives an overview of the field and its applications in mathematics and computer theory, considering problems from the shortest routes covering certain stops to the minimum number of colours needed to colour a map with different colours for neighbouring countries. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Orthogonal Arrays
Author: A.S. Hedayat
Publisher: Springer Science & Business Media
ISBN: 1461214785
Category : Mathematics
Languages : en
Pages : 433
Book Description
Orthogonal arrays have played a vital role in improving the quality of products manufactured throughout the world. This first book on the subject since its introduction more than fifty years ago serves as a key resource to this area of designing experiments. Most of the arrays obtained by the methods in this book are available electronically. Anyone running experiments - whether in a chemistry lab or a manufacturing plant, or in agricultural or medical research - will find this book useful.
Publisher: Springer Science & Business Media
ISBN: 1461214785
Category : Mathematics
Languages : en
Pages : 433
Book Description
Orthogonal arrays have played a vital role in improving the quality of products manufactured throughout the world. This first book on the subject since its introduction more than fifty years ago serves as a key resource to this area of designing experiments. Most of the arrays obtained by the methods in this book are available electronically. Anyone running experiments - whether in a chemistry lab or a manufacturing plant, or in agricultural or medical research - will find this book useful.
Introduction to Combinatorics
Author: Walter D. Wallis
Publisher: CRC Press
ISBN: 1498777635
Category : Mathematics
Languages : en
Pages : 444
Book Description
What Is Combinatorics Anyway? Broadly speaking, combinatorics is the branch of mathematics dealing with different ways of selecting objects from a set or arranging objects. It tries to answer two major kinds of questions, namely, counting questions: how many ways can a selection or arrangement be chosen with a particular set of properties; and structural questions: does there exist a selection or arrangement of objects with a particular set of properties? The authors have presented a text for students at all levels of preparation. For some, this will be the first course where the students see several real proofs. Others will have a good background in linear algebra, will have completed the calculus stream, and will have started abstract algebra. The text starts by briefly discussing several examples of typical combinatorial problems to give the reader a better idea of what the subject covers. The next chapters explore enumerative ideas and also probability. It then moves on to enumerative functions and the relations between them, and generating functions and recurrences., Important families of functions, or numbers and then theorems are presented. Brief introductions to computer algebra and group theory come next. Structures of particular interest in combinatorics: posets, graphs, codes, Latin squares, and experimental designs follow. The authors conclude with further discussion of the interaction between linear algebra and combinatorics. Features Two new chapters on probability and posets. Numerous new illustrations, exercises, and problems. More examples on current technology use A thorough focus on accuracy Three appendices: sets, induction and proof techniques, vectors and matrices, and biographies with historical notes, Flexible use of MapleTM and MathematicaTM
Publisher: CRC Press
ISBN: 1498777635
Category : Mathematics
Languages : en
Pages : 444
Book Description
What Is Combinatorics Anyway? Broadly speaking, combinatorics is the branch of mathematics dealing with different ways of selecting objects from a set or arranging objects. It tries to answer two major kinds of questions, namely, counting questions: how many ways can a selection or arrangement be chosen with a particular set of properties; and structural questions: does there exist a selection or arrangement of objects with a particular set of properties? The authors have presented a text for students at all levels of preparation. For some, this will be the first course where the students see several real proofs. Others will have a good background in linear algebra, will have completed the calculus stream, and will have started abstract algebra. The text starts by briefly discussing several examples of typical combinatorial problems to give the reader a better idea of what the subject covers. The next chapters explore enumerative ideas and also probability. It then moves on to enumerative functions and the relations between them, and generating functions and recurrences., Important families of functions, or numbers and then theorems are presented. Brief introductions to computer algebra and group theory come next. Structures of particular interest in combinatorics: posets, graphs, codes, Latin squares, and experimental designs follow. The authors conclude with further discussion of the interaction between linear algebra and combinatorics. Features Two new chapters on probability and posets. Numerous new illustrations, exercises, and problems. More examples on current technology use A thorough focus on accuracy Three appendices: sets, induction and proof techniques, vectors and matrices, and biographies with historical notes, Flexible use of MapleTM and MathematicaTM
An Introduction to Abstract Algebra
Author: Derek J.S. Robinson
Publisher: Walter de Gruyter
ISBN: 3110198169
Category :
Languages : en
Pages : 293
Book Description
This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader's skill and progress. The book should be suitable for students in the third or fourth year of study at a North American university or in the second or third year at a university in Europe.
Publisher: Walter de Gruyter
ISBN: 3110198169
Category :
Languages : en
Pages : 293
Book Description
This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader's skill and progress. The book should be suitable for students in the third or fourth year of study at a North American university or in the second or third year at a university in Europe.