Mountain Weather Research and Forecasting

Mountain Weather Research and Forecasting PDF Author: Fotini K. Chow
Publisher: Springer Science & Business Media
ISBN: 9400740980
Category : Science
Languages : en
Pages : 760

Get Book Here

Book Description
This book provides readers with a broad understanding of the fundamental principles driving atmospheric flow over complex terrain and provides historical context for recent developments and future direction for researchers and forecasters. The topics in this book are expanded from those presented at the Mountain Weather Workshop, which took place in Whistler, British Columbia, Canada, August 5-8, 2008. The inspiration for the workshop came from the American Meteorological Society (AMS) Mountain Meteorology Committee and was designed to bridge the gap between the research and forecasting communities by providing a forum for extended discussion and joint education. For academic researchers, this book provides some insight into issues important to the forecasting community. For the forecasting community, this book provides training on fundamentals of atmospheric processes over mountainous regions, which are notoriously difficult to predict. The book also helps to provide a better understanding of current research and forecast challenges, including the latest contributions and advancements to the field. The book begins with an overview of mountain weather and forecasting chal- lenges specific to complex terrain, followed by chapters that focus on diurnal mountain/valley flows that develop under calm conditions and dynamically-driven winds under strong forcing. The focus then shifts to other phenomena specific to mountain regions: Alpine foehn, boundary layer and air quality issues, orographic precipitation processes, and microphysics parameterizations. Having covered the major physical processes, the book shifts to observation and modelling techniques used in mountain regions, including model configuration and parameterizations such as turbulence, and model applications in operational forecasting. The book concludes with a discussion of the current state of research and forecasting in complex terrain, including a vision of how to bridge the gap in the future.

Mountain Weather Research and Forecasting

Mountain Weather Research and Forecasting PDF Author: Fotini K. Chow
Publisher: Springer Science & Business Media
ISBN: 9400740980
Category : Science
Languages : en
Pages : 760

Get Book Here

Book Description
This book provides readers with a broad understanding of the fundamental principles driving atmospheric flow over complex terrain and provides historical context for recent developments and future direction for researchers and forecasters. The topics in this book are expanded from those presented at the Mountain Weather Workshop, which took place in Whistler, British Columbia, Canada, August 5-8, 2008. The inspiration for the workshop came from the American Meteorological Society (AMS) Mountain Meteorology Committee and was designed to bridge the gap between the research and forecasting communities by providing a forum for extended discussion and joint education. For academic researchers, this book provides some insight into issues important to the forecasting community. For the forecasting community, this book provides training on fundamentals of atmospheric processes over mountainous regions, which are notoriously difficult to predict. The book also helps to provide a better understanding of current research and forecast challenges, including the latest contributions and advancements to the field. The book begins with an overview of mountain weather and forecasting chal- lenges specific to complex terrain, followed by chapters that focus on diurnal mountain/valley flows that develop under calm conditions and dynamically-driven winds under strong forcing. The focus then shifts to other phenomena specific to mountain regions: Alpine foehn, boundary layer and air quality issues, orographic precipitation processes, and microphysics parameterizations. Having covered the major physical processes, the book shifts to observation and modelling techniques used in mountain regions, including model configuration and parameterizations such as turbulence, and model applications in operational forecasting. The book concludes with a discussion of the current state of research and forecasting in complex terrain, including a vision of how to bridge the gap in the future.

The Atmospheric Boundary Layer

The Atmospheric Boundary Layer PDF Author: J. R. Garratt
Publisher: Cambridge University Press
ISBN: 9780521467452
Category : Mathematics
Languages : en
Pages : 340

Get Book Here

Book Description
The book gives a comprehensive and lucid account of the science of the atmospheric boundary layer (ABL). There is an emphasis on the application of the ABL to numerical modelling of the climate. The book comprises nine chapters, several appendices (data tables, information sources, physical constants) and an extensive reference list. Chapter 1 serves as an introduction, with chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and sea. The structure of the clear-sky, thermally stratified ABL is treated in chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant, since the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate simulation.

Mesoscale Meteorology and Forecasting

Mesoscale Meteorology and Forecasting PDF Author: Peter Ray
Publisher: Springer
ISBN: 1935704206
Category : Science
Languages : en
Pages : 803

Get Book Here

Book Description
This book is a collection of selected lectures presented at the ‘Intensive Course on Mesoscale Meteorology and Forecasting’ in Boulder, USA, in 1984. It includes mesoscale classifications, observing techniques and systems, internally generated circulations, mesoscale convective systems, externally forced circulations, modeling and short-range forecasting techniques. This is a highly illustrated book and comprehensive work, including extensive bibliographic references. It is aimed at graduates in meteorology and for professionals working in the field.

An Introduction to Boundary Layer Meteorology

An Introduction to Boundary Layer Meteorology PDF Author: Roland B. Stull
Publisher: Springer Science & Business Media
ISBN: 9789027727695
Category : Science
Languages : en
Pages : 688

Get Book Here

Book Description
Part of the excitement in boundary-layer meteorology is the challenge associated with turbulent flow - one of the unsolved problems in classical physics. An additional attraction of the filed is the rich diversity of topics and research methods that are collected under the umbrella-term of boundary-layer meteorology. The flavor of the challenges and the excitement associated with the study of the atmospheric boundary layer are captured in this textbook. Fundamental concepts and mathematics are presented prior to their use, physical interpretations of the terms in equations are given, sample data are shown, examples are solved, and exercises are included. The work should also be considered as a major reference and as a review of the literature, since it includes tables of parameterizatlons, procedures, filed experiments, useful constants, and graphs of various phenomena under a variety of conditions. It is assumed that the work will be used at the beginning graduate level for students with an undergraduate background in meteorology, but the author envisions, and has catered for, a heterogeneity in the background and experience of his readers.

Turbulent Shear Flows 8

Turbulent Shear Flows 8 PDF Author: Franz Durst
Publisher: Springer Science & Business Media
ISBN: 3642776744
Category : Science
Languages : en
Pages : 419

Get Book Here

Book Description
This volume contains a selection of the papers presented at the Eighth Symposium on Turbulent Shear Flows held at the Technical University of Munich, 9-11 September 1991. The first of these biennial international symposia was held at the Pennsylvania State Uni versity, USA, in 1977; subsequent symposia have been held at Imperial College, London, England; the University of California, Davis, USA; the University of Karlsruhe, Ger many; Cornell University, Ithaca, USA; the Paul Sabatier University, Toulouse, France; and Stanford University, California, USA. The purpose of this series of symposia is to provide a forum for the presentation and discussion of new developments in the field of turbulence, especially as related to shear flows of importance in engineering and geo physics. From the 330 extended abstracts submitted for this symposium, 145 papers were presented orally and 60 as posters. Out of these, we have selected twenty-four papers for inclusion in this volume, each of which has been revised and extended in accordance with the editors' recommendations. The following four theme areas were selected after consideration of the quality of the contributions, the importance of the area, and the selection made in earlier volumes: - wall flows, - separated flows, - compressibility effects, - buoyancy, rotation, and curvature effects. As in the past, each section corresponding to the above areas begins with an introduction by an authority in the field that places the individual contributions in context with one another and with related research.

Proceedings of the Workshop on Diurnal Cycles and the Stable Boundary Layer

Proceedings of the Workshop on Diurnal Cycles and the Stable Boundary Layer PDF Author:
Publisher:
ISBN:
Category : Boundary layer (Meteorology)
Languages : en
Pages : 296

Get Book Here

Book Description


Wall Models for Large-eddy Simulation Based on Optimal Control Theory

Wall Models for Large-eddy Simulation Based on Optimal Control Theory PDF Author: Parviz Moin
Publisher:
ISBN:
Category : Eddies
Languages : en
Pages : 118

Get Book Here

Book Description
Large-eddy simulation (LES) requires very high resolution in high Reynolds number, attached turbulent boundary layers due to the need to capture the small, dynamically important near-wall eddies. Wall modeling enables LES to be performed on grids that do not resolve these eddies by providing approximate boundary conditions to the simulation. Unfortunately, wall models based on purely physical reasoning often lead to an inaccurate LES, particularly on coarse grids and at high Reynolds numbers, because they do not account for numerical and subgrid scale modeling errors. To compensate for these errors, a wall model based on optimal control theory has been developed that differs from previous approaches in two significant ways. First, the computational expense of the optimization procedure has been reduced by an order of magnitude (with respect to previous control-based wall models) by defining the optimization problem only near the boundaries and carefully constructing the equations governing the optimization problem. Second, no a priori information is required since a near-wall RANS solver is coupled with the LES to provide the controller with information about the mean velocity profile. This approach has been successfully tested in high Reynolds number plane channel flow.

Turbulence in the Atmosphere

Turbulence in the Atmosphere PDF Author: John C. Wyngaard
Publisher: Cambridge University Press
ISBN: 1139485520
Category : Science
Languages : en
Pages : 407

Get Book Here

Book Description
Based on his over forty years of research and teaching, John C. Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors.

Air-Sea Exchange: Physics, Chemistry and Dynamics

Air-Sea Exchange: Physics, Chemistry and Dynamics PDF Author: G.L. Geernaert
Publisher: Springer Science & Business Media
ISBN: 9401592918
Category : Science
Languages : en
Pages : 573

Get Book Here

Book Description
During the 1980's a wealth of information was reported from field and laboratory experiments in order to validate andlor modify various aspects of the surface layer Monin-Obukhov (M-O) similarity theory for use over the sea, and to introduce and test new concepts related to high resolution flux magnitudes and variabilities. For example, data from various field experiments conducted on the North Sea, Lake Ontario, and the Atlantic experiments, among others, yielded information on the dependence of the flux coefficients on wave state. In all field projects, the usual criteria for satisfying M-O similarity were applied. The assumptions of stationarity and homogeneity was assumed to be relevant over both small and large scales. In addition, the properties of the outer layer were assumed to be "correlated" with properties of the surface layer. These assumptions generally required that data were averaged for spatial footprints representing scales greater than 25 km (or typically 30 minutes or longer for typical windspeeds). While more and more data became available over the years, and the technology applied was more reliable, robust, and durable, the flux coefficients and other turbulent parameters still exhibited significant unexplained scatter. Since the scatter did not show sufficient reduction over the years to meet customer needs, in spite of improved technology and heavy financial investments, one could only conclude that perhaps the use of similarity theory contained too many simplifications when applied to environments which were more complicated than previously thought.

Surface Heterogencity Effects on Turbulent Fluxes in the Atmospheric Boundary Layer

Surface Heterogencity Effects on Turbulent Fluxes in the Atmospheric Boundary Layer PDF Author: James R. Stoll
Publisher:
ISBN:
Category :
Languages : en
Pages : 320

Get Book Here

Book Description