Author: A.B. Bakushinsky
Publisher: Springer Science & Business Media
ISBN: 140203122X
Category : Mathematics
Languages : en
Pages : 298
Book Description
This volume presents a unified approach to constructing iterative methods for solving irregular operator equations and provides rigorous theoretical analysis for several classes of these methods. The analysis of methods includes convergence theorems as well as necessary and sufficient conditions for their convergence at a given rate. The principal groups of methods studied in the book are iterative processes based on the technique of universal linear approximations, stable gradient-type processes, and methods of stable continuous approximations. Compared to existing monographs and textbooks on ill-posed problems, the main distinguishing feature of the presented approach is that it doesn’t require any structural conditions on equations under consideration, except for standard smoothness conditions. This allows to obtain in a uniform style stable iterative methods applicable to wide classes of nonlinear inverse problems. Practical efficiency of suggested algorithms is illustrated in application to inverse problems of potential theory and acoustic scattering. The volume can be read by anyone with a basic knowledge of functional analysis. The book will be of interest to applied mathematicians and specialists in mathematical modeling and inverse problems.
Iterative Methods for Approximate Solution of Inverse Problems
Iterative Optimization in Inverse Problems
Author: Charles L. Byrne
Publisher: CRC Press
ISBN: 1482222337
Category : Business & Economics
Languages : en
Pages : 302
Book Description
Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author’s considerable research in the field, including his recently developed class of SUMMA algorithms. Related to sequential unconstrained minimization methods, the SUMMA class includes a wide range of iterative algorithms well known to researchers in various areas, such as statistics and image processing. Organizing the topics from general to more specific, the book first gives an overview of sequential optimization, the subclasses of auxiliary-function methods, and the SUMMA algorithms. The next three chapters present particular examples in more detail, including barrier- and penalty-function methods, proximal minimization, and forward-backward splitting. The author also focuses on fixed-point algorithms for operators on Euclidean space and then extends the discussion to include distance measures other than the usual Euclidean distance. In the final chapters, specific problems illustrate the use of iterative methods previously discussed. Most chapters contain exercises that introduce new ideas and make the book suitable for self-study. Unifying a variety of seemingly disparate algorithms, the book shows how to derive new properties of algorithms by comparing known properties of other algorithms. This unifying approach also helps researchers—from statisticians working on parameter estimation to image scientists processing scanning data to mathematicians involved in theoretical and applied optimization—discover useful related algorithms in areas outside of their expertise.
Publisher: CRC Press
ISBN: 1482222337
Category : Business & Economics
Languages : en
Pages : 302
Book Description
Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author’s considerable research in the field, including his recently developed class of SUMMA algorithms. Related to sequential unconstrained minimization methods, the SUMMA class includes a wide range of iterative algorithms well known to researchers in various areas, such as statistics and image processing. Organizing the topics from general to more specific, the book first gives an overview of sequential optimization, the subclasses of auxiliary-function methods, and the SUMMA algorithms. The next three chapters present particular examples in more detail, including barrier- and penalty-function methods, proximal minimization, and forward-backward splitting. The author also focuses on fixed-point algorithms for operators on Euclidean space and then extends the discussion to include distance measures other than the usual Euclidean distance. In the final chapters, specific problems illustrate the use of iterative methods previously discussed. Most chapters contain exercises that introduce new ideas and make the book suitable for self-study. Unifying a variety of seemingly disparate algorithms, the book shows how to derive new properties of algorithms by comparing known properties of other algorithms. This unifying approach also helps researchers—from statisticians working on parameter estimation to image scientists processing scanning data to mathematicians involved in theoretical and applied optimization—discover useful related algorithms in areas outside of their expertise.
Handbook of Mathematical Methods in Imaging
Author: Otmar Scherzer
Publisher: Springer Science & Business Media
ISBN: 0387929193
Category : Mathematics
Languages : en
Pages : 1626
Book Description
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Publisher: Springer Science & Business Media
ISBN: 0387929193
Category : Mathematics
Languages : en
Pages : 1626
Book Description
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Publisher: SIAM
ISBN: 0898715342
Category : Mathematics
Languages : en
Pages : 537
Book Description
Mathematics of Computing -- General.
Introduction to Inverse Problems in Imaging
Author: M. Bertero
Publisher: CRC Press
ISBN: 9781439822067
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
This is a graduate textbook on the principles of linear inverse problems, methods of their approximate solution, and practical application in imaging. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of readers from different backgrounds in science and engineering. Mathematical prerequisites are first courses in analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms. With examples and exercises throughout, the book will provide the reader with the appropriate background for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems.
Publisher: CRC Press
ISBN: 9781439822067
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
This is a graduate textbook on the principles of linear inverse problems, methods of their approximate solution, and practical application in imaging. The level of mathematical treatment is kept as low as possible to make the book suitable for a wide range of readers from different backgrounds in science and engineering. Mathematical prerequisites are first courses in analysis, geometry, linear algebra, probability theory, and Fourier analysis. The authors concentrate on presenting easily implementable and fast solution algorithms. With examples and exercises throughout, the book will provide the reader with the appropriate background for a clear understanding of the essence of inverse problems (ill-posedness and its cure) and, consequently, for an intelligent assessment of the rapidly growing literature on these problems.
A Taste of Inverse Problems
Author: Martin Hanke
Publisher: SIAM
ISBN: 1611974941
Category : Mathematics
Languages : en
Pages : 171
Book Description
Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. This book presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. A Taste of Inverse Problems: Basic Theory and Examples rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations;presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.
Publisher: SIAM
ISBN: 1611974941
Category : Mathematics
Languages : en
Pages : 171
Book Description
Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. This book presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. A Taste of Inverse Problems: Basic Theory and Examples rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations;presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.
Discrete Inverse Problems
Author: Per Christian Hansen
Publisher: SIAM
ISBN: 089871883X
Category : Mathematics
Languages : en
Pages : 220
Book Description
This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.
Publisher: SIAM
ISBN: 089871883X
Category : Mathematics
Languages : en
Pages : 220
Book Description
This book gives an introduction to the practical treatment of inverse problems by means of numerical methods, with a focus on basic mathematical and computational aspects. To solve inverse problems, we demonstrate that insight about them goes hand in hand with algorithms.
Numerical Methods for Solving Inverse Problems of Mathematical Physics
Author: A. A. Samarskii
Publisher: Walter de Gruyter
ISBN: 3110205793
Category : Mathematics
Languages : en
Pages : 453
Book Description
The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.
Publisher: Walter de Gruyter
ISBN: 3110205793
Category : Mathematics
Languages : en
Pages : 453
Book Description
The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.
Applied Inverse Problems
Author: Larisa Beilina
Publisher: Springer Science & Business Media
ISBN: 1461478162
Category : Science
Languages : en
Pages : 206
Book Description
This proceedings volume is based on papers presented at the First Annual Workshop on Inverse Problems which was held in June 2011 at the Department of Mathematics, Chalmers University of Technology. The purpose of the workshop was to present new analytical developments and numerical methods for solutions of inverse problems. State-of-the-art and future challenges in solving inverse problems for a broad range of applications was also discussed. The contributions in this volume are reflective of these themes and will be beneficial to researchers in this area.
Publisher: Springer Science & Business Media
ISBN: 1461478162
Category : Science
Languages : en
Pages : 206
Book Description
This proceedings volume is based on papers presented at the First Annual Workshop on Inverse Problems which was held in June 2011 at the Department of Mathematics, Chalmers University of Technology. The purpose of the workshop was to present new analytical developments and numerical methods for solutions of inverse problems. State-of-the-art and future challenges in solving inverse problems for a broad range of applications was also discussed. The contributions in this volume are reflective of these themes and will be beneficial to researchers in this area.
Computational Methods for Inverse Problems in Imaging
Author: Marco Donatelli
Publisher: Springer Nature
ISBN: 3030328821
Category : Mathematics
Languages : en
Pages : 171
Book Description
This book presents recent mathematical methods in the area of inverse problems in imaging with a particular focus on the computational aspects and applications. The formulation of inverse problems in imaging requires accurate mathematical modeling in order to preserve the significant features of the image. The book describes computational methods to efficiently address these problems based on new optimization algorithms for smooth and nonsmooth convex minimization, on the use of structured (numerical) linear algebra, and on multilevel techniques. It also discusses various current and challenging applications in fields such as astronomy, microscopy, and biomedical imaging. The book is intended for researchers and advanced graduate students interested in inverse problems and imaging.
Publisher: Springer Nature
ISBN: 3030328821
Category : Mathematics
Languages : en
Pages : 171
Book Description
This book presents recent mathematical methods in the area of inverse problems in imaging with a particular focus on the computational aspects and applications. The formulation of inverse problems in imaging requires accurate mathematical modeling in order to preserve the significant features of the image. The book describes computational methods to efficiently address these problems based on new optimization algorithms for smooth and nonsmooth convex minimization, on the use of structured (numerical) linear algebra, and on multilevel techniques. It also discusses various current and challenging applications in fields such as astronomy, microscopy, and biomedical imaging. The book is intended for researchers and advanced graduate students interested in inverse problems and imaging.