Author: Adam R. Thomas
Publisher: American Mathematical Soc.
ISBN: 1470443376
Category : Education
Languages : en
Pages : 191
Book Description
This paper is a contribution to the study of the subgroup structure of excep-tional algebraic groups over algebraically closed fields of arbitrary characteristic. Following Serre, a closed subgroup of a semisimple algebraic group G is called irreducible if it lies in no proper parabolic subgroup of G. In this paper we com-plete the classification of irreducible connected subgroups of exceptional algebraic groups, providing an explicit set of representatives for the conjugacy classes of such subgroups. Many consequences of this classification are also given. These include results concerning the representations of such subgroups on various G-modules: for example, the conjugacy classes of irreducible connected subgroups are determined by their composition factors on the adjoint module of G, with one exception. A result of Liebeck and Testerman shows that each irreducible connected sub-group X of G has only finitely many overgroups and hence the overgroups of X form a lattice. We provide tables that give representatives of each conjugacy class of connected overgroups within this lattice structure. We use this to prove results concerning the subgroup structure of G: for example, when the characteristic is 2, there exists a maximal connected subgroup of G containing a conjugate of every irreducible subgroup A1 of G.
The Irreducible Subgroups of Exceptional Algebraic Groups
Author: Adam R. Thomas
Publisher: American Mathematical Soc.
ISBN: 1470443376
Category : Education
Languages : en
Pages : 191
Book Description
This paper is a contribution to the study of the subgroup structure of excep-tional algebraic groups over algebraically closed fields of arbitrary characteristic. Following Serre, a closed subgroup of a semisimple algebraic group G is called irreducible if it lies in no proper parabolic subgroup of G. In this paper we com-plete the classification of irreducible connected subgroups of exceptional algebraic groups, providing an explicit set of representatives for the conjugacy classes of such subgroups. Many consequences of this classification are also given. These include results concerning the representations of such subgroups on various G-modules: for example, the conjugacy classes of irreducible connected subgroups are determined by their composition factors on the adjoint module of G, with one exception. A result of Liebeck and Testerman shows that each irreducible connected sub-group X of G has only finitely many overgroups and hence the overgroups of X form a lattice. We provide tables that give representatives of each conjugacy class of connected overgroups within this lattice structure. We use this to prove results concerning the subgroup structure of G: for example, when the characteristic is 2, there exists a maximal connected subgroup of G containing a conjugate of every irreducible subgroup A1 of G.
Publisher: American Mathematical Soc.
ISBN: 1470443376
Category : Education
Languages : en
Pages : 191
Book Description
This paper is a contribution to the study of the subgroup structure of excep-tional algebraic groups over algebraically closed fields of arbitrary characteristic. Following Serre, a closed subgroup of a semisimple algebraic group G is called irreducible if it lies in no proper parabolic subgroup of G. In this paper we com-plete the classification of irreducible connected subgroups of exceptional algebraic groups, providing an explicit set of representatives for the conjugacy classes of such subgroups. Many consequences of this classification are also given. These include results concerning the representations of such subgroups on various G-modules: for example, the conjugacy classes of irreducible connected subgroups are determined by their composition factors on the adjoint module of G, with one exception. A result of Liebeck and Testerman shows that each irreducible connected sub-group X of G has only finitely many overgroups and hence the overgroups of X form a lattice. We provide tables that give representatives of each conjugacy class of connected overgroups within this lattice structure. We use this to prove results concerning the subgroup structure of G: for example, when the characteristic is 2, there exists a maximal connected subgroup of G containing a conjugate of every irreducible subgroup A1 of G.
Irreducible Subgroups of Exceptional Algebraic Groups
Author: Donna M. Testerman
Publisher: American Mathematical Soc.
ISBN: 0821824538
Category : Embeddings
Languages : en
Pages : 198
Book Description
Let [italic]Y be a simply-connected, simple algebraic group of exceptional type, defined over an algebraically closed field [italic]k of prime characteristic [italic]p > 0. The main result describes all semisimple, closed connected subgroups of [italic]Y which act irreducibly on some rational [italic]k[italic]Y module [italic]V. This extends work of Dynkin who obtained a similar classification for algebraically closed fields of characteristic 0. The main result has been combined with work of G. Seitz to obtain a classification of the maximal closed connected subgroups of the classical algebraic groups defined over [italic]k.
Publisher: American Mathematical Soc.
ISBN: 0821824538
Category : Embeddings
Languages : en
Pages : 198
Book Description
Let [italic]Y be a simply-connected, simple algebraic group of exceptional type, defined over an algebraically closed field [italic]k of prime characteristic [italic]p > 0. The main result describes all semisimple, closed connected subgroups of [italic]Y which act irreducibly on some rational [italic]k[italic]Y module [italic]V. This extends work of Dynkin who obtained a similar classification for algebraically closed fields of characteristic 0. The main result has been combined with work of G. Seitz to obtain a classification of the maximal closed connected subgroups of the classical algebraic groups defined over [italic]k.
On Non-Generic Finite Subgroups of Exceptional Algebraic Groups
Author: Alastair J. Litterick
Publisher: American Mathematical Soc.
ISBN: 1470428377
Category : Mathematics
Languages : en
Pages : 168
Book Description
The study of finite subgroups of a simple algebraic group $G$ reduces in a sense to those which are almost simple. If an almost simple subgroup of $G$ has a socle which is not isomorphic to a group of Lie type in the underlying characteristic of $G$, then the subgroup is called non-generic. This paper considers non-generic subgroups of simple algebraic groups of exceptional type in arbitrary characteristic.
Publisher: American Mathematical Soc.
ISBN: 1470428377
Category : Mathematics
Languages : en
Pages : 168
Book Description
The study of finite subgroups of a simple algebraic group $G$ reduces in a sense to those which are almost simple. If an almost simple subgroup of $G$ has a socle which is not isomorphic to a group of Lie type in the underlying characteristic of $G$, then the subgroup is called non-generic. This paper considers non-generic subgroups of simple algebraic groups of exceptional type in arbitrary characteristic.
Reductive Subgroups of Exceptional Algebraic Groups
Author: Martin W. Liebeck
Publisher: American Mathematical Soc.
ISBN: 0821804618
Category : Mathematics
Languages : en
Pages : 122
Book Description
The theory of simple algebraic groups is important in many areas of mathematics. The authors of this book investigate the subgroups of certain types of simple algebraic groups and obtain a complete description of all those subgroups which are themselves simple. This description is particularly useful in understanding centralizers of subgroups and restrictions of representations.
Publisher: American Mathematical Soc.
ISBN: 0821804618
Category : Mathematics
Languages : en
Pages : 122
Book Description
The theory of simple algebraic groups is important in many areas of mathematics. The authors of this book investigate the subgroups of certain types of simple algebraic groups and obtain a complete description of all those subgroups which are themselves simple. This description is particularly useful in understanding centralizers of subgroups and restrictions of representations.
Irreducible Geometric Subgroups of Classical Algebraic Groups
Author: Timothy C. Burness,
Publisher: American Mathematical Soc.
ISBN: 1470414945
Category : Mathematics
Languages : en
Pages : 100
Book Description
Let be a simple classical algebraic group over an algebraically closed field of characteristic with natural module . Let be a closed subgroup of and let be a non-trivial irreducible tensor-indecomposable -restricted rational -module such that the restriction of to is irreducible. In this paper the authors classify the triples of this form, where is a disconnected maximal positive-dimensional closed subgroup of preserving a natural geometric structure on .
Publisher: American Mathematical Soc.
ISBN: 1470414945
Category : Mathematics
Languages : en
Pages : 100
Book Description
Let be a simple classical algebraic group over an algebraically closed field of characteristic with natural module . Let be a closed subgroup of and let be a non-trivial irreducible tensor-indecomposable -restricted rational -module such that the restriction of to is irreducible. In this paper the authors classify the triples of this form, where is a disconnected maximal positive-dimensional closed subgroup of preserving a natural geometric structure on .
Linear Algebraic Groups and Finite Groups of Lie Type
Author: Gunter Malle
Publisher: Cambridge University Press
ISBN: 113949953X
Category : Mathematics
Languages : en
Pages : 324
Book Description
Originating from a summer school taught by the authors, this concise treatment includes many of the main results in the area. An introductory chapter describes the fundamental results on linear algebraic groups, culminating in the classification of semisimple groups. The second chapter introduces more specialized topics in the subgroup structure of semisimple groups and describes the classification of the maximal subgroups of the simple algebraic groups. The authors then systematically develop the subgroup structure of finite groups of Lie type as a consequence of the structural results on algebraic groups. This approach will help students to understand the relationship between these two classes of groups. The book covers many topics that are central to the subject, but missing from existing textbooks. The authors provide numerous instructive exercises and examples for those who are learning the subject as well as more advanced topics for research students working in related areas.
Publisher: Cambridge University Press
ISBN: 113949953X
Category : Mathematics
Languages : en
Pages : 324
Book Description
Originating from a summer school taught by the authors, this concise treatment includes many of the main results in the area. An introductory chapter describes the fundamental results on linear algebraic groups, culminating in the classification of semisimple groups. The second chapter introduces more specialized topics in the subgroup structure of semisimple groups and describes the classification of the maximal subgroups of the simple algebraic groups. The authors then systematically develop the subgroup structure of finite groups of Lie type as a consequence of the structural results on algebraic groups. This approach will help students to understand the relationship between these two classes of groups. The book covers many topics that are central to the subject, but missing from existing textbooks. The authors provide numerous instructive exercises and examples for those who are learning the subject as well as more advanced topics for research students working in related areas.
$A_1$ Subgroups of Exceptional Algebraic Groups
Author: Ross Lawther
Publisher: American Mathematical Soc.
ISBN: 0821819666
Category : Mathematics
Languages : en
Pages : 146
Book Description
This book is intended for graduate students and research mathematicians interested in group theory and genralizations
Publisher: American Mathematical Soc.
ISBN: 0821819666
Category : Mathematics
Languages : en
Pages : 146
Book Description
This book is intended for graduate students and research mathematicians interested in group theory and genralizations
The Maximal Subgroups of Classical Algebraic Groups
Author: Gary M. Seitz
Publisher: American Mathematical Soc.
ISBN: 0821824279
Category : Linear algebraic groups
Languages : en
Pages : 294
Book Description
Let [italic]V be a finite dimensional vector space over an algebraically closed field of characteristic p [greater than] 0 and let G = SL([italic]V), Sp([italic]V), or SO([italic]V). The main result describes all closed, connected, overgroups of [italic]X in SL([italic]V), assuming [italic]X is a closed, connected, irreducible subgroup of G.
Publisher: American Mathematical Soc.
ISBN: 0821824279
Category : Linear algebraic groups
Languages : en
Pages : 294
Book Description
Let [italic]V be a finite dimensional vector space over an algebraically closed field of characteristic p [greater than] 0 and let G = SL([italic]V), Sp([italic]V), or SO([italic]V). The main result describes all closed, connected, overgroups of [italic]X in SL([italic]V), assuming [italic]X is a closed, connected, irreducible subgroup of G.
Maximal Subgroups of Exceptional Algebraic Groups
Author: Gary M. Seitz
Publisher: American Mathematical Soc.
ISBN: 0821825046
Category : Mathematics
Languages : en
Pages : 205
Book Description
Let [italic]G be a simple algebraic group of exceptional type over an algebraically closed field of characteristic [italic]p. The subgroups of [italic]G maximal with respect to being closed and connected are determined, although mild restrictions on [italic]p are required in dealing with certain simple subgroups of low rank. For [italic]p = 0 we recover the results of Dynkin.
Publisher: American Mathematical Soc.
ISBN: 0821825046
Category : Mathematics
Languages : en
Pages : 205
Book Description
Let [italic]G be a simple algebraic group of exceptional type over an algebraically closed field of characteristic [italic]p. The subgroups of [italic]G maximal with respect to being closed and connected are determined, although mild restrictions on [italic]p are required in dealing with certain simple subgroups of low rank. For [italic]p = 0 we recover the results of Dynkin.
Groups, Combinatorics and Geometry
Author: Martin W. Liebeck
Publisher: Cambridge University Press
ISBN: 0521406854
Category : Mathematics
Languages : en
Pages : 505
Book Description
This volume contains a collection of papers on the subject of the classification of finite simple groups.
Publisher: Cambridge University Press
ISBN: 0521406854
Category : Mathematics
Languages : en
Pages : 505
Book Description
This volume contains a collection of papers on the subject of the classification of finite simple groups.