Invitations to Geometry and Topology

Invitations to Geometry and Topology PDF Author: Martin R. Bridson
Publisher:
ISBN: 9780198507727
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
This volume presents an array of topics that introduce the reader to key ideas in active areas in geometry and topology. The material is presented in a way that both graduate students and researchers should find accessible and enticing. The topics covered range from Morse theory and complex geometry theory to geometric group theory, and are accompanied by exercises that are designed to deepen the reader's understanding and to guide them in exciting directions for future investigation.

Invitations to Geometry and Topology

Invitations to Geometry and Topology PDF Author: Martin R. Bridson
Publisher:
ISBN: 9780198507727
Category : Mathematics
Languages : en
Pages : 352

Get Book Here

Book Description
This volume presents an array of topics that introduce the reader to key ideas in active areas in geometry and topology. The material is presented in a way that both graduate students and researchers should find accessible and enticing. The topics covered range from Morse theory and complex geometry theory to geometric group theory, and are accompanied by exercises that are designed to deepen the reader's understanding and to guide them in exciting directions for future investigation.

Differential Geometry

Differential Geometry PDF Author: Clifford Henry Taubes
Publisher: OUP Oxford
ISBN: 0191621226
Category : Mathematics
Languages : en
Pages : 313

Get Book Here

Book Description
Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kähler geometry. Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail.

Algebraic Models in Geometry

Algebraic Models in Geometry PDF Author: Yves Félix
Publisher: Oxford University Press
ISBN: 0199206511
Category : Mathematics
Languages : en
Pages : 483

Get Book Here

Book Description
A text aimed at both geometers needing the tools of rational homotopy theory to understand and discover new results concerning various geometric subjects, and topologists who require greater breadth of knowledge about geometric applications of the algebra of homotopy theory.

Special Metrics and Group Actions in Geometry

Special Metrics and Group Actions in Geometry PDF Author: Simon G. Chiossi
Publisher: Springer
ISBN: 3319675192
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.

An Introduction to Algebraic Geometry and Algebraic Groups

An Introduction to Algebraic Geometry and Algebraic Groups PDF Author: Meinolf Geck
Publisher: Oxford University Press
ISBN: 019967616X
Category : Mathematics
Languages : en
Pages : 321

Get Book Here

Book Description
An accessible text introducing algebraic groups at advanced undergraduate and early graduate level, this book covers the conjugacy of Borel subgroups and maximal tori, the theory of algebraic groups with a BN-pair, Frobenius maps on affine varieties and algebraic groups, zeta functions and Lefschetz numbers for varieties over finite fields.

Riemannian Holonomy Groups and Calibrated Geometry

Riemannian Holonomy Groups and Calibrated Geometry PDF Author: Dominic D. Joyce
Publisher: Oxford University Press
ISBN: 019921560X
Category : Mathematics
Languages : en
Pages : 314

Get Book Here

Book Description
Riemannian Holonomy Groups and Calibrated Geometry covers an exciting and active area of research at the crossroads of several different fields in mathematics and physics. Drawing on the author's previous work the text has been written to explain the advanced mathematics involved simply and clearly to graduate students in both disciplines.

Algebraic Geometry and Arithmetic Curves

Algebraic Geometry and Arithmetic Curves PDF Author: 刘擎
Publisher: Oxford Graduate Texts in Mathe
ISBN: 0198502842
Category : Juvenile Nonfiction
Languages : en
Pages : 594

Get Book Here

Book Description
Based on the author's course for first-year students this well-written text explains how the tools of algebraic geometry and of number theory can be applied to a study of curves. The book starts by introducing the essential background material and includes 600 exercises.

The Geometry of the Word Problem for Finitely Generated Groups

The Geometry of the Word Problem for Finitely Generated Groups PDF Author: Noel Brady
Publisher: Springer Science & Business Media
ISBN: 3764379502
Category : Mathematics
Languages : en
Pages : 206

Get Book Here

Book Description
The origins of the word problem are in group theory, decidability and complexity. But through the vision of M. Gromov and the language of filling functions, the topic now impacts the world of large-scale geometry. This book contains accounts of many recent developments in Geometric Group Theory and shows the interaction between the word problem and geometry continues to be a central theme. It contains many figures, numerous exercises and open questions.

Global Aspects of Complex Geometry

Global Aspects of Complex Geometry PDF Author: Fabrizio Catanese
Publisher: Springer Science & Business Media
ISBN: 3540354808
Category : Mathematics
Languages : en
Pages : 508

Get Book Here

Book Description
This collection of surveys present an overview of recent developments in Complex Geometry. Topics range from curve and surface theory through special varieties in higher dimensions, moduli theory, Kähler geometry, and group actions to Hodge theory and characteristic p-geometry. Written by established experts this book will be a must for mathematicians working in Complex Geometry

Differential Geometry and Integrable Systems

Differential Geometry and Integrable Systems PDF Author: Martin A. Guest
Publisher: American Mathematical Soc.
ISBN: 0821829386
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
Ideas and techniques from the theory of integrable systems are playing an increasingly important role in geometry. Thanks to the development of tools from Lie theory, algebraic geometry, symplectic geometry, and topology, classical problems are investigated more systematically. New problems are also arising in mathematical physics. A major international conference was held at the University of Tokyo in July 2000. It brought together scientists in all of the areas influenced byintegrable systems. This book is the first of three collections of expository and research articles. This volume focuses on differential geometry. It is remarkable that many classical objects in surface theory and submanifold theory are described as integrable systems. Having such a description generallyreveals previously unnoticed symmetries and can lead to surprisingly explicit solutions. Surfaces of constant curvature in Euclidean space, harmonic maps from surfaces to symmetric spaces, and analogous structures on higher-dimensional manifolds are some of the examples that have broadened the horizons of differential geometry, bringing a rich supply of concrete examples into the theory of integrable systems. Many of the articles in this volume are written by prominent researchers and willserve as introductions to the topics. It is intended for graduate students and researchers interested in integrable systems and their relations to differential geometry, topology, algebraic geometry, and physics. The second volume from this conference also available from the AMS is Integrable Systems,Topology, and Physics, Volume 309 CONM/309in the Contemporary Mathematics series. The forthcoming third volume will be published by the Mathematical Society of Japan and will be available outside of Japan from the AMS in the Advanced Studies in Pure Mathematics series.