Author: John Cragoe Tallack
Publisher: Cambridge University Press
ISBN: 0521079993
Category : Vector analysis
Languages : en
Pages : 310
Book Description
The first eight chapters of this book were originally published in 1966 as the successful Introduction to Elementary Vector Analysis. In 1970, the text was considerably expanded to include six new chapters covering additional techniques (the vector product and the triple products) and applications in pure and applied mathematics. It is that version which is reproduced here. The book provides a valuable introduction to vectors for teachers and students of mathematics, science and engineering in sixth forms, technical colleges, colleges of education and universities.
Introduction to Vector Analysis
Author: John Cragoe Tallack
Publisher: Cambridge University Press
ISBN: 0521079993
Category : Vector analysis
Languages : en
Pages : 310
Book Description
The first eight chapters of this book were originally published in 1966 as the successful Introduction to Elementary Vector Analysis. In 1970, the text was considerably expanded to include six new chapters covering additional techniques (the vector product and the triple products) and applications in pure and applied mathematics. It is that version which is reproduced here. The book provides a valuable introduction to vectors for teachers and students of mathematics, science and engineering in sixth forms, technical colleges, colleges of education and universities.
Publisher: Cambridge University Press
ISBN: 0521079993
Category : Vector analysis
Languages : en
Pages : 310
Book Description
The first eight chapters of this book were originally published in 1966 as the successful Introduction to Elementary Vector Analysis. In 1970, the text was considerably expanded to include six new chapters covering additional techniques (the vector product and the triple products) and applications in pure and applied mathematics. It is that version which is reproduced here. The book provides a valuable introduction to vectors for teachers and students of mathematics, science and engineering in sixth forms, technical colleges, colleges of education and universities.
Vector Analysis
Author: Louis Brand
Publisher: Courier Corporation
ISBN: 048615484X
Category : Mathematics
Languages : en
Pages : 306
Book Description
This text was designed as a short introductory course to give students the tools of vector algebra and calculus, as well as a brief glimpse into the subjects' manifold applications. 1957 edition. 86 figures.
Publisher: Courier Corporation
ISBN: 048615484X
Category : Mathematics
Languages : en
Pages : 306
Book Description
This text was designed as a short introductory course to give students the tools of vector algebra and calculus, as well as a brief glimpse into the subjects' manifold applications. 1957 edition. 86 figures.
Vector Analysis and Cartesian Tensors
Author: D. E. Bourne
Publisher: Academic Press
ISBN: 1483260704
Category : Mathematics
Languages : en
Pages : 271
Book Description
Vector Analysis and Cartesian Tensors, Second Edition focuses on the processes, methodologies, and approaches involved in vector analysis and Cartesian tensors, including volume integrals, coordinates, curves, and vector functions. The publication first elaborates on rectangular Cartesian coordinates and rotation of axes, scalar and vector algebra, and differential geometry of curves. Discussions focus on differentiation rules, vector functions and their geometrical representation, scalar and vector products, multiplication of a vector by a scalar, and angles between lines through the origin. The text then elaborates on scalar and vector fields and line, surface, and volume integrals, including surface, volume, and repeated integrals, general orthogonal curvilinear coordinates, and vector components in orthogonal curvilinear coordinates. The manuscript ponders on representation theorems for isotropic tensor functions, Cartesian tensors, applications in potential theory, and integral theorems. Topics include geometrical and physical significance of divergence and curl, Poisson's equation in vector form, isotropic scalar functions of symmetrical second order tensors, and diagonalization of second-order symmetrical tensors. The publication is a valuable reference for mathematicians and researchers interested in vector analysis and Cartesian tensors.
Publisher: Academic Press
ISBN: 1483260704
Category : Mathematics
Languages : en
Pages : 271
Book Description
Vector Analysis and Cartesian Tensors, Second Edition focuses on the processes, methodologies, and approaches involved in vector analysis and Cartesian tensors, including volume integrals, coordinates, curves, and vector functions. The publication first elaborates on rectangular Cartesian coordinates and rotation of axes, scalar and vector algebra, and differential geometry of curves. Discussions focus on differentiation rules, vector functions and their geometrical representation, scalar and vector products, multiplication of a vector by a scalar, and angles between lines through the origin. The text then elaborates on scalar and vector fields and line, surface, and volume integrals, including surface, volume, and repeated integrals, general orthogonal curvilinear coordinates, and vector components in orthogonal curvilinear coordinates. The manuscript ponders on representation theorems for isotropic tensor functions, Cartesian tensors, applications in potential theory, and integral theorems. Topics include geometrical and physical significance of divergence and curl, Poisson's equation in vector form, isotropic scalar functions of symmetrical second order tensors, and diagonalization of second-order symmetrical tensors. The publication is a valuable reference for mathematicians and researchers interested in vector analysis and Cartesian tensors.
Introduction to Vector and Tensor Analysis
Author: Robert C. Wrede
Publisher: Courier Corporation
ISBN: 0486137112
Category : Mathematics
Languages : en
Pages : 436
Book Description
Examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, and more. 1963 edition.
Publisher: Courier Corporation
ISBN: 0486137112
Category : Mathematics
Languages : en
Pages : 436
Book Description
Examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, and more. 1963 edition.
Vector and Tensor Analysis with Applications
Author: A. I. Borisenko
Publisher: Courier Corporation
ISBN: 0486131904
Category : Mathematics
Languages : en
Pages : 292
Book Description
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
Publisher: Courier Corporation
ISBN: 0486131904
Category : Mathematics
Languages : en
Pages : 292
Book Description
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
An Introduction to Vectors, Vector Operators and Vector Analysis
Author: Pramod S. Joag
Publisher: Cambridge University Press
ISBN: 1316870472
Category : Science
Languages : en
Pages : 548
Book Description
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.
Publisher: Cambridge University Press
ISBN: 1316870472
Category : Science
Languages : en
Pages : 548
Book Description
Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.
Vector Analysis Versus Vector Calculus
Author: Antonio Galbis
Publisher: Springer Science & Business Media
ISBN: 1461422000
Category : Mathematics
Languages : en
Pages : 383
Book Description
The aim of this book is to facilitate the use of Stokes' Theorem in applications. The text takes a differential geometric point of view and provides for the student a bridge between pure and applied mathematics by carefully building a formal rigorous development of the topic and following this through to concrete applications in two and three variables. Key topics include vectors and vector fields, line integrals, regular k-surfaces, flux of a vector field, orientation of a surface, differential forms, Stokes' theorem, and divergence theorem. This book is intended for upper undergraduate students who have completed a standard introduction to differential and integral calculus for functions of several variables. The book can also be useful to engineering and physics students who know how to handle the theorems of Green, Stokes and Gauss, but would like to explore the topic further.
Publisher: Springer Science & Business Media
ISBN: 1461422000
Category : Mathematics
Languages : en
Pages : 383
Book Description
The aim of this book is to facilitate the use of Stokes' Theorem in applications. The text takes a differential geometric point of view and provides for the student a bridge between pure and applied mathematics by carefully building a formal rigorous development of the topic and following this through to concrete applications in two and three variables. Key topics include vectors and vector fields, line integrals, regular k-surfaces, flux of a vector field, orientation of a surface, differential forms, Stokes' theorem, and divergence theorem. This book is intended for upper undergraduate students who have completed a standard introduction to differential and integral calculus for functions of several variables. The book can also be useful to engineering and physics students who know how to handle the theorems of Green, Stokes and Gauss, but would like to explore the topic further.
Vector Analysis for Computer Graphics
Author: John Vince
Publisher: Springer Science & Business Media
ISBN: 1846288037
Category : Computers
Languages : en
Pages : 260
Book Description
This book is a complete introduction to vector analysis, especially within the context of computer graphics. The author shows why vectors are useful and how it is possible to develop analytical skills in manipulating vector algebra. Even though vector analysis is a relatively recent development in the history of mathematics, it has become a powerful and central tool in describing and solving a wide range of geometric problems. The book is divided into eleven chapters covering the mathematical foundations of vector algebra and its application to, among others, lines, planes, intersections, rotating vectors, and vector differentiation.
Publisher: Springer Science & Business Media
ISBN: 1846288037
Category : Computers
Languages : en
Pages : 260
Book Description
This book is a complete introduction to vector analysis, especially within the context of computer graphics. The author shows why vectors are useful and how it is possible to develop analytical skills in manipulating vector algebra. Even though vector analysis is a relatively recent development in the history of mathematics, it has become a powerful and central tool in describing and solving a wide range of geometric problems. The book is divided into eleven chapters covering the mathematical foundations of vector algebra and its application to, among others, lines, planes, intersections, rotating vectors, and vector differentiation.
Vector Analysis
Author: Klaus Jänich
Publisher: Springer Science & Business Media
ISBN: 1475734786
Category : Mathematics
Languages : en
Pages : 289
Book Description
This book presents modern vector analysis and carefully describes the classical notation and understanding of the theory. It covers all of the classical vector analysis in Euclidean space, as well as on manifolds, and goes on to introduce de Rham Cohomology, Hodge theory, elementary differential geometry, and basic duality. The material is accessible to readers and students with only calculus and linear algebra as prerequisites. A large number of illustrations, exercises, and tests with answers make this book an invaluable self-study source.
Publisher: Springer Science & Business Media
ISBN: 1475734786
Category : Mathematics
Languages : en
Pages : 289
Book Description
This book presents modern vector analysis and carefully describes the classical notation and understanding of the theory. It covers all of the classical vector analysis in Euclidean space, as well as on manifolds, and goes on to introduce de Rham Cohomology, Hodge theory, elementary differential geometry, and basic duality. The material is accessible to readers and students with only calculus and linear algebra as prerequisites. A large number of illustrations, exercises, and tests with answers make this book an invaluable self-study source.
A History of Vector Analysis
Author: Michael J. Crowe
Publisher: Courier Corporation
ISBN: 0486679101
Category : Mathematics
Languages : en
Pages : 306
Book Description
Prize-winning study traces the rise of the vector concept from the discovery of complex numbers through the systems of hypercomplex numbers to the final acceptance around 1910 of the modern system of vector analysis.
Publisher: Courier Corporation
ISBN: 0486679101
Category : Mathematics
Languages : en
Pages : 306
Book Description
Prize-winning study traces the rise of the vector concept from the discovery of complex numbers through the systems of hypercomplex numbers to the final acceptance around 1910 of the modern system of vector analysis.