Author:
Publisher: Academic Press
ISBN: 0080873715
Category : Mathematics
Languages : en
Pages : 237
Book Description
Introduction to the Theory of Entire Functions
Introduction to the Theory of Entire Functions
Author:
Publisher: Academic Press
ISBN: 0080873715
Category : Mathematics
Languages : en
Pages : 237
Book Description
Introduction to the Theory of Entire Functions
Publisher: Academic Press
ISBN: 0080873715
Category : Mathematics
Languages : en
Pages : 237
Book Description
Introduction to the Theory of Entire Functions
Introduction to the Theory of Entire Functions of Several Variables
Author: Lev Isaakovich Ronkin
Publisher: American Mathematical Soc.
ISBN: 9780821886687
Category : Mathematics
Languages : en
Pages : 286
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821886687
Category : Mathematics
Languages : en
Pages : 286
Book Description
Entire and Meromorphic Functions
Author: Lee A. Rubel
Publisher: Springer Science & Business Media
ISBN: 1461207355
Category : Mathematics
Languages : en
Pages : 196
Book Description
Mathematics is a beautiful subject, and entire functions is its most beautiful branch. Every aspect of mathematics enters into it, from analysis, algebra, and geometry all the way to differential equations and logic. For example, my favorite theorem in all of mathematics is a theorem of R. NevanJinna that two functions, meromorphic in the whole complex plane, that share five values must be identical. For real functions, there is nothing that even remotely corresponds to this. This book is an introduction to the theory of entire and meromorphic functions, with a heavy emphasis on Nevanlinna theory, otherwise known as value-distribution theory. Things included here that occur in no other book (that we are aware of) are the Fourier series method for entire and mero morphic functions, a study of integer valued entire functions, the Malliavin Rubel extension of Carlson's Theorem (the "sampling theorem"), and the first-order theory of the ring of all entire functions, and a final chapter on Tarski's "High School Algebra Problem," a topic from mathematical logic that connects with entire functions. This book grew out of a set of classroom notes for a course given at the University of Illinois in 1963, but they have been much changed, corrected, expanded, and updated, partially for a similar course at the same place in 1993. My thanks to the many students who prepared notes and have given corrections and comments.
Publisher: Springer Science & Business Media
ISBN: 1461207355
Category : Mathematics
Languages : en
Pages : 196
Book Description
Mathematics is a beautiful subject, and entire functions is its most beautiful branch. Every aspect of mathematics enters into it, from analysis, algebra, and geometry all the way to differential equations and logic. For example, my favorite theorem in all of mathematics is a theorem of R. NevanJinna that two functions, meromorphic in the whole complex plane, that share five values must be identical. For real functions, there is nothing that even remotely corresponds to this. This book is an introduction to the theory of entire and meromorphic functions, with a heavy emphasis on Nevanlinna theory, otherwise known as value-distribution theory. Things included here that occur in no other book (that we are aware of) are the Fourier series method for entire and mero morphic functions, a study of integer valued entire functions, the Malliavin Rubel extension of Carlson's Theorem (the "sampling theorem"), and the first-order theory of the ring of all entire functions, and a final chapter on Tarski's "High School Algebra Problem," a topic from mathematical logic that connects with entire functions. This book grew out of a set of classroom notes for a course given at the University of Illinois in 1963, but they have been much changed, corrected, expanded, and updated, partially for a similar course at the same place in 1993. My thanks to the many students who prepared notes and have given corrections and comments.
An Introduction to Complex Function Theory
Author: Bruce P. Palka
Publisher: Springer Science & Business Media
ISBN: 038797427X
Category : Mathematics
Languages : en
Pages : 585
Book Description
This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.
Publisher: Springer Science & Business Media
ISBN: 038797427X
Category : Mathematics
Languages : en
Pages : 585
Book Description
This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.
Introduction to the Theory of Algebraic Functions of One Variable
Author: Claude Chevalley
Publisher: American Mathematical Soc.
ISBN: 0821815067
Category : Mathematics
Languages : en
Pages : 204
Book Description
Presents an approach to algebraic geometry of curves that is treated as the theory of algebraic functions on the curve. This book discusses such topics as the theory of divisors on a curve, the Riemann-Roch theorem, $p$-adic completion, and extensions of the fields of functions (covering theory) and of the fields of constants.
Publisher: American Mathematical Soc.
ISBN: 0821815067
Category : Mathematics
Languages : en
Pages : 204
Book Description
Presents an approach to algebraic geometry of curves that is treated as the theory of algebraic functions on the curve. This book discusses such topics as the theory of divisors on a curve, the Riemann-Roch theorem, $p$-adic completion, and extensions of the fields of functions (covering theory) and of the fields of constants.
Introduction to the Theory of Analytic Functions
Author: James Harkness
Publisher:
ISBN:
Category : Analytic functions
Languages : en
Pages : 358
Book Description
Publisher:
ISBN:
Category : Analytic functions
Languages : en
Pages : 358
Book Description
Intermediate Analysis
Author: John Meigs Hubbell Olmsted
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 332
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 332
Book Description
Elementary Theory of Analytic Functions of One or Several Complex Variables
Author: Henri Cartan
Publisher: Courier Corporation
ISBN: 0486318672
Category : Mathematics
Languages : en
Pages : 242
Book Description
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Publisher: Courier Corporation
ISBN: 0486318672
Category : Mathematics
Languages : en
Pages : 242
Book Description
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
An Introduction to Ramsey Theory
Author: Matthew Katz
Publisher: American Mathematical Soc.
ISBN: 1470442906
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book takes the reader on a journey through Ramsey theory, from graph theory and combinatorics to set theory to logic and metamathematics. Written in an informal style with few requisites, it develops two basic principles of Ramsey theory: many combinatorial properties persist under partitions, but to witness this persistence, one has to start with very large objects. The interplay between those two principles not only produces beautiful theorems but also touches the very foundations of mathematics. In the course of this book, the reader will learn about both aspects. Among the topics explored are Ramsey's theorem for graphs and hypergraphs, van der Waerden's theorem on arithmetic progressions, infinite ordinals and cardinals, fast growing functions, logic and provability, Gödel incompleteness, and the Paris-Harrington theorem. Quoting from the book, “There seems to be a murky abyss lurking at the bottom of mathematics. While in many ways we cannot hope to reach solid ground, mathematicians have built impressive ladders that let us explore the depths of this abyss and marvel at the limits and at the power of mathematical reasoning at the same time. Ramsey theory is one of those ladders.”
Publisher: American Mathematical Soc.
ISBN: 1470442906
Category : Mathematics
Languages : en
Pages : 224
Book Description
This book takes the reader on a journey through Ramsey theory, from graph theory and combinatorics to set theory to logic and metamathematics. Written in an informal style with few requisites, it develops two basic principles of Ramsey theory: many combinatorial properties persist under partitions, but to witness this persistence, one has to start with very large objects. The interplay between those two principles not only produces beautiful theorems but also touches the very foundations of mathematics. In the course of this book, the reader will learn about both aspects. Among the topics explored are Ramsey's theorem for graphs and hypergraphs, van der Waerden's theorem on arithmetic progressions, infinite ordinals and cardinals, fast growing functions, logic and provability, Gödel incompleteness, and the Paris-Harrington theorem. Quoting from the book, “There seems to be a murky abyss lurking at the bottom of mathematics. While in many ways we cannot hope to reach solid ground, mathematicians have built impressive ladders that let us explore the depths of this abyss and marvel at the limits and at the power of mathematical reasoning at the same time. Ramsey theory is one of those ladders.”
Real Analysis
Author: Jewgeni H. Dshalalow
Publisher: CRC Press
ISBN: 1420036890
Category : Mathematics
Languages : en
Pages : 583
Book Description
Designed for use in a two-semester course on abstract analysis, REAL ANALYSIS: An Introduction to the Theory of Real Functions and Integration illuminates the principle topics that constitute real analysis. Self-contained, with coverage of topology, measure theory, and integration, it offers a thorough elaboration of major theorems, notions, and co
Publisher: CRC Press
ISBN: 1420036890
Category : Mathematics
Languages : en
Pages : 583
Book Description
Designed for use in a two-semester course on abstract analysis, REAL ANALYSIS: An Introduction to the Theory of Real Functions and Integration illuminates the principle topics that constitute real analysis. Self-contained, with coverage of topology, measure theory, and integration, it offers a thorough elaboration of major theorems, notions, and co