Author: Vitaliy V. Shtykov
Publisher: Springer Nature
ISBN: 3030376141
Category : Science
Languages : en
Pages : 341
Book Description
This textbook, based on the authors’ class-tested material, is accessible to students at the advanced undergraduate and graduate level in physics and engineering. While its primary function is didactic, this book’s comprehensive choice of topics and its clear and authoritative synthesis of ideas make it a useful reference for researchers, device engineers, and course instructors who wish to consolidate their knowledge of this field. The book takes the semi-classical approach where light is treated as a wave in accordance with the classical Maxwell equations, while matter is governed by quantum theory. It begins by introducing the postulates and mathematical framework of quantum theory, followed by the formalism of the density matrix which allows the transition from microscopic (quantum) quantities to macroscopic (classical) ones. Consequently, the equations describing the reaction of matter to the electromagnetic field in the form of polarization, magnetization, and current are derived. These equations (together with the Maxwell equations) form the complete system of equations sufficient to model a wide class of problems surrounding linear and nonlinear interactions of electromagnetic fields with matter. The nonlinear character of the governing equations determines parameters of the steady-state mode of the quantum generator and is also demonstrated in harmonic generation via propagation of laser radiation in various media. The touchstone description of magnetic phenomena will be of interest to scientists who deal with applications of magneto-resonance phenomena in biology and medicine. Other advanced topics covered include electric dipole transitions, magnetic dipole transitions, plasma transitions, and the devices that can be based on these and other electro-optical and nonlinear-optical systems. This textbook features numerous exercises, some of which are investigatory and some of which require computational solutions.
Introduction to Quantum Electronics and Nonlinear Optics
Author: Vitaliy V. Shtykov
Publisher: Springer Nature
ISBN: 3030376141
Category : Science
Languages : en
Pages : 341
Book Description
This textbook, based on the authors’ class-tested material, is accessible to students at the advanced undergraduate and graduate level in physics and engineering. While its primary function is didactic, this book’s comprehensive choice of topics and its clear and authoritative synthesis of ideas make it a useful reference for researchers, device engineers, and course instructors who wish to consolidate their knowledge of this field. The book takes the semi-classical approach where light is treated as a wave in accordance with the classical Maxwell equations, while matter is governed by quantum theory. It begins by introducing the postulates and mathematical framework of quantum theory, followed by the formalism of the density matrix which allows the transition from microscopic (quantum) quantities to macroscopic (classical) ones. Consequently, the equations describing the reaction of matter to the electromagnetic field in the form of polarization, magnetization, and current are derived. These equations (together with the Maxwell equations) form the complete system of equations sufficient to model a wide class of problems surrounding linear and nonlinear interactions of electromagnetic fields with matter. The nonlinear character of the governing equations determines parameters of the steady-state mode of the quantum generator and is also demonstrated in harmonic generation via propagation of laser radiation in various media. The touchstone description of magnetic phenomena will be of interest to scientists who deal with applications of magneto-resonance phenomena in biology and medicine. Other advanced topics covered include electric dipole transitions, magnetic dipole transitions, plasma transitions, and the devices that can be based on these and other electro-optical and nonlinear-optical systems. This textbook features numerous exercises, some of which are investigatory and some of which require computational solutions.
Publisher: Springer Nature
ISBN: 3030376141
Category : Science
Languages : en
Pages : 341
Book Description
This textbook, based on the authors’ class-tested material, is accessible to students at the advanced undergraduate and graduate level in physics and engineering. While its primary function is didactic, this book’s comprehensive choice of topics and its clear and authoritative synthesis of ideas make it a useful reference for researchers, device engineers, and course instructors who wish to consolidate their knowledge of this field. The book takes the semi-classical approach where light is treated as a wave in accordance with the classical Maxwell equations, while matter is governed by quantum theory. It begins by introducing the postulates and mathematical framework of quantum theory, followed by the formalism of the density matrix which allows the transition from microscopic (quantum) quantities to macroscopic (classical) ones. Consequently, the equations describing the reaction of matter to the electromagnetic field in the form of polarization, magnetization, and current are derived. These equations (together with the Maxwell equations) form the complete system of equations sufficient to model a wide class of problems surrounding linear and nonlinear interactions of electromagnetic fields with matter. The nonlinear character of the governing equations determines parameters of the steady-state mode of the quantum generator and is also demonstrated in harmonic generation via propagation of laser radiation in various media. The touchstone description of magnetic phenomena will be of interest to scientists who deal with applications of magneto-resonance phenomena in biology and medicine. Other advanced topics covered include electric dipole transitions, magnetic dipole transitions, plasma transitions, and the devices that can be based on these and other electro-optical and nonlinear-optical systems. This textbook features numerous exercises, some of which are investigatory and some of which require computational solutions.
Introduction to Nonlinear Laser Spectroscopy
Author: Marc Levenson
Publisher: Elsevier
ISBN: 0323158447
Category : Science
Languages : en
Pages : 271
Book Description
Introduction to Nonlinear Laser Spectroscopy focuses on the principles of nonlinear laser spectroscopy. This book discusses the experimental techniques of nonlinear optics and spectroscopy. Comprised of seven chapters, this book starts with an overview of the stimulated Raman effect and coherent anti-Stokes Raman spectroscopy, which can be used in a varied way to generate radiation in the ultraviolet and vacuum-ultraviolet areas. This text then explains the simplest quantum-mechanical system consisting of an isolated entity with energy eigenstates
Publisher: Elsevier
ISBN: 0323158447
Category : Science
Languages : en
Pages : 271
Book Description
Introduction to Nonlinear Laser Spectroscopy focuses on the principles of nonlinear laser spectroscopy. This book discusses the experimental techniques of nonlinear optics and spectroscopy. Comprised of seven chapters, this book starts with an overview of the stimulated Raman effect and coherent anti-Stokes Raman spectroscopy, which can be used in a varied way to generate radiation in the ultraviolet and vacuum-ultraviolet areas. This text then explains the simplest quantum-mechanical system consisting of an isolated entity with energy eigenstates
Introduction to Nonlinear Optics
Author: Geoffrey New
Publisher: Cambridge University Press
ISBN: 1139500767
Category : Science
Languages : en
Pages : 275
Book Description
Since the early days of nonlinear optics in the 1960s, the field has expanded dramatically, and is now a vast and vibrant field with countless technological applications. Providing a gentle introduction to the principles of the subject, this textbook is ideal for graduate students starting their research in this exciting area. After basic ideas have been outlined, the book offers a thorough analysis of second harmonic generation and related second-order processes, before moving on to third-order effects, the nonlinear optics of short optical pulses and coherent effects such as electromagnetically-induced transparency. A simplified treatment of high harmonic generation is presented at the end. More advanced topics, such as the linear and nonlinear optics of crystals, the tensor nature of the nonlinear coefficients and their quantum mechanical representation, are confined to specialist chapters so that readers can focus on basic principles before tackling these more difficult aspects of the subject.
Publisher: Cambridge University Press
ISBN: 1139500767
Category : Science
Languages : en
Pages : 275
Book Description
Since the early days of nonlinear optics in the 1960s, the field has expanded dramatically, and is now a vast and vibrant field with countless technological applications. Providing a gentle introduction to the principles of the subject, this textbook is ideal for graduate students starting their research in this exciting area. After basic ideas have been outlined, the book offers a thorough analysis of second harmonic generation and related second-order processes, before moving on to third-order effects, the nonlinear optics of short optical pulses and coherent effects such as electromagnetically-induced transparency. A simplified treatment of high harmonic generation is presented at the end. More advanced topics, such as the linear and nonlinear optics of crystals, the tensor nature of the nonlinear coefficients and their quantum mechanical representation, are confined to specialist chapters so that readers can focus on basic principles before tackling these more difficult aspects of the subject.
Quantum Electronics
Author: Herbert Rabin
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Quantum Electronics
Author: Amnon Yariv
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 702
Book Description
The text has been revised to incorporate new developments in lasers and quantum electronics. Other subjects covered include phase-conjugate optics, long wavelength quaternary semiconductor lasers, the physics of semiconductor lasers, laser arrays and free-electron lasers.
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 702
Book Description
The text has been revised to incorporate new developments in lasers and quantum electronics. Other subjects covered include phase-conjugate optics, long wavelength quaternary semiconductor lasers, the physics of semiconductor lasers, laser arrays and free-electron lasers.
Contemporary Nonlinear Optics
Author: Robert Boyd
Publisher: Academic Press
ISBN: 0323148204
Category : Science
Languages : en
Pages : 494
Book Description
Contemporary Nonlinear Optics discusses the different activities in the field of nonlinear optics. The book is comprised of 10 chapters. Chapter 1 presents a description of the field of nonlinear guided-wave optics. Chapter 2 surveys a new branch of nonlinear optics under the heading optical solitons. Chapter 3 reviews recent progress in the field of optical phase conjugation. Chapter 4 discusses ultrafast nonlinear optics, a field that is growing rapidly with the ability of generating and controlling femtosecond optical pulses. Chapter 5 examines a branch of nonlinear optics that may be termed nonlinear quantum optics. Chapter 6 reviews the new field of photorefractive adaptive neural networks. Chapter 7 presents a discussion of recent successes in the development of nonlinear optical media based on organic materials. Chapter 8 reviews the field of nonlinear optics in quantum confined structures. Chapter 9 reviews the field of nonlinear laser spectroscopy, with emphasis on advances made during the 1980s. Finally, Chapter 10 reviews the field of nonlinear optical dynamics by considering nonlinear optical systems that exhibit temporal, spatial, or spatio-temporal instabilities. This book is a valuable source for physicists and other scientists interested in optical systems and neural networks.
Publisher: Academic Press
ISBN: 0323148204
Category : Science
Languages : en
Pages : 494
Book Description
Contemporary Nonlinear Optics discusses the different activities in the field of nonlinear optics. The book is comprised of 10 chapters. Chapter 1 presents a description of the field of nonlinear guided-wave optics. Chapter 2 surveys a new branch of nonlinear optics under the heading optical solitons. Chapter 3 reviews recent progress in the field of optical phase conjugation. Chapter 4 discusses ultrafast nonlinear optics, a field that is growing rapidly with the ability of generating and controlling femtosecond optical pulses. Chapter 5 examines a branch of nonlinear optics that may be termed nonlinear quantum optics. Chapter 6 reviews the new field of photorefractive adaptive neural networks. Chapter 7 presents a discussion of recent successes in the development of nonlinear optical media based on organic materials. Chapter 8 reviews the field of nonlinear optics in quantum confined structures. Chapter 9 reviews the field of nonlinear laser spectroscopy, with emphasis on advances made during the 1980s. Finally, Chapter 10 reviews the field of nonlinear optical dynamics by considering nonlinear optical systems that exhibit temporal, spatial, or spatio-temporal instabilities. This book is a valuable source for physicists and other scientists interested in optical systems and neural networks.
Introductory Quantum Optics
Author: Christopher Gerry
Publisher: Cambridge University Press
ISBN: 9780521527354
Category : Science
Languages : en
Pages : 338
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521527354
Category : Science
Languages : en
Pages : 338
Book Description
Publisher Description
Photon-Atom Interactions
Author: Mitchel Weissbluth
Publisher: Academic Press
ISBN: 0080926509
Category : Science
Languages : en
Pages : 422
Book Description
This book provides an introduction to the body of theory shared by several branches of modern optics--nonlinear optics, quantum electronics, laser physics, and quantum optics--with an emphasis on quantum and statistical aspects. It is intended for well prepared undergraduate and graduate students in physics, applied physics, electrical engineering, and chemistry who seek a level of preparation of sufficient maturity to enable them to follow the specialized literature.
Publisher: Academic Press
ISBN: 0080926509
Category : Science
Languages : en
Pages : 422
Book Description
This book provides an introduction to the body of theory shared by several branches of modern optics--nonlinear optics, quantum electronics, laser physics, and quantum optics--with an emphasis on quantum and statistical aspects. It is intended for well prepared undergraduate and graduate students in physics, applied physics, electrical engineering, and chemistry who seek a level of preparation of sufficient maturity to enable them to follow the specialized literature.
The Elements of Nonlinear Optics
Author: Paul N. Butcher
Publisher: Cambridge University Press
ISBN: 9780521424240
Category : Science
Languages : en
Pages : 364
Book Description
There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.
Publisher: Cambridge University Press
ISBN: 9780521424240
Category : Science
Languages : en
Pages : 364
Book Description
There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.
Nonlinear Optics
Author: E. G. Sauter
Publisher: John Wiley & Sons
ISBN: 9780471148609
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
The first complete guide to nonlinear theory and practice for engineers Nonlinear Optics is a highly accessible, applications-oriented introduction to a new and rapidly growing field. An indispensable resource for both electrical engineering students and professionals working in the telecommunications and optoelectronics industry, it: * Treats the subject of nonlinear optics in purely classical terms for electrical engineers * Offers numerous real-world examples clearly demonstrating the connection between theory and practical application * Features helpful chapter-end problems and numerous examples * Explores current and future applications of nonlinear optics in telecommunications, computers, and other fields Due to its many applications in fiber-optic communications and optoelectronics the propagation of light through nonlinear media is an increasingly important topic among electrical engineers. Unfortunately, books geared to the specific concerns of electrical engineering students and professionals in the telecommunications and optoelectronics industry continue to be in short supply. This book is designed to fill that gap. Nonlinear Optics is a complete, self-contained, applications-oriented introduction to the field. In an effort to make this book as accessible as possible to its intended audience, E. G. Sauter has foregone quantum mechanical descriptions, choosing instead to treat the subject of nonlinear optics in purely classical terms. He has also included numerous real-world examples that clearly demonstrate the connection between theory and practical application. The book begins with the theoretical foundations for the practical discussions that follow. Dr. Sauter treats the basic relations between polarization and electric field strength, the different nonlinear effects of polarizations of order two and three, wave propagation of complex phasors in nonlinear media and anisotropic media, and the conservation of energy and momentum in nonlinear processes. Over the six chapters that follow, these theories are applied to specific cases, including the linear electrooptic effects; second harmonic generation; parametric effects; four-wave mixing, including the Raman and Brillouin effects; and the optical Kerr effect. The remaining chapters present in-depth discussions of pulse propagation, solitons, and nonlinear effects in glass fibers. Helpful problems appear at the end of each chapter, and numerous worked and unworked examples are scattered throughout the text to elucidate principles and clarify complex material. A highly accessible, applications-oriented introduction to a new and rapidly growing field, Nonlinear Optics is an indispensable resource for both electrical engineering students and working professionals.
Publisher: John Wiley & Sons
ISBN: 9780471148609
Category : Technology & Engineering
Languages : en
Pages : 232
Book Description
The first complete guide to nonlinear theory and practice for engineers Nonlinear Optics is a highly accessible, applications-oriented introduction to a new and rapidly growing field. An indispensable resource for both electrical engineering students and professionals working in the telecommunications and optoelectronics industry, it: * Treats the subject of nonlinear optics in purely classical terms for electrical engineers * Offers numerous real-world examples clearly demonstrating the connection between theory and practical application * Features helpful chapter-end problems and numerous examples * Explores current and future applications of nonlinear optics in telecommunications, computers, and other fields Due to its many applications in fiber-optic communications and optoelectronics the propagation of light through nonlinear media is an increasingly important topic among electrical engineers. Unfortunately, books geared to the specific concerns of electrical engineering students and professionals in the telecommunications and optoelectronics industry continue to be in short supply. This book is designed to fill that gap. Nonlinear Optics is a complete, self-contained, applications-oriented introduction to the field. In an effort to make this book as accessible as possible to its intended audience, E. G. Sauter has foregone quantum mechanical descriptions, choosing instead to treat the subject of nonlinear optics in purely classical terms. He has also included numerous real-world examples that clearly demonstrate the connection between theory and practical application. The book begins with the theoretical foundations for the practical discussions that follow. Dr. Sauter treats the basic relations between polarization and electric field strength, the different nonlinear effects of polarizations of order two and three, wave propagation of complex phasors in nonlinear media and anisotropic media, and the conservation of energy and momentum in nonlinear processes. Over the six chapters that follow, these theories are applied to specific cases, including the linear electrooptic effects; second harmonic generation; parametric effects; four-wave mixing, including the Raman and Brillouin effects; and the optical Kerr effect. The remaining chapters present in-depth discussions of pulse propagation, solitons, and nonlinear effects in glass fibers. Helpful problems appear at the end of each chapter, and numerous worked and unworked examples are scattered throughout the text to elucidate principles and clarify complex material. A highly accessible, applications-oriented introduction to a new and rapidly growing field, Nonlinear Optics is an indispensable resource for both electrical engineering students and working professionals.