Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics

Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics PDF Author: Troy L Story
Publisher: iUniverse
ISBN: 0595339212
Category : Geometry, Differential
Languages : en
Pages : 165

Get Book Here

Book Description
Introduction to Differential Geometry with applications to Navier-Stokes Dynamics is an invaluable manuscript for anyone who wants to understand and use exterior calculus and differential geometry, the modern approach to calculus and geometry. Author Troy Story makes use of over thirty years of research experience to provide a smooth transition from conventional calculus to exterior calculus and differential geometry, assuming only a knowledge of conventional calculus. Introduction to Differential Geometry with applications to Navier-Stokes Dynamics includes the topics: Geometry, Exterior calculus, Homology and co-homology, Applications of differential geometry and exterior calculus to: Hamiltonian mechanics, geometric optics, irreversible thermodynamics, black hole dynamics, electromagnetism, classical string fields, and Navier-Stokes dynamics.

Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics

Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics PDF Author: Troy L Story
Publisher: iUniverse
ISBN: 0595339212
Category : Geometry, Differential
Languages : en
Pages : 165

Get Book Here

Book Description
Introduction to Differential Geometry with applications to Navier-Stokes Dynamics is an invaluable manuscript for anyone who wants to understand and use exterior calculus and differential geometry, the modern approach to calculus and geometry. Author Troy Story makes use of over thirty years of research experience to provide a smooth transition from conventional calculus to exterior calculus and differential geometry, assuming only a knowledge of conventional calculus. Introduction to Differential Geometry with applications to Navier-Stokes Dynamics includes the topics: Geometry, Exterior calculus, Homology and co-homology, Applications of differential geometry and exterior calculus to: Hamiltonian mechanics, geometric optics, irreversible thermodynamics, black hole dynamics, electromagnetism, classical string fields, and Navier-Stokes dynamics.

Mathematical Modeling I

Mathematical Modeling I PDF Author: Troy L. Story
Publisher: iUniverse
ISBN: 1450212344
Category :
Languages : en
Pages : 303

Get Book Here

Book Description
Mathematical Modeling I: kinetics, thermodynamics and statistical mechanics (MMI) features traditional topics in physical chemistry (chemical physics), but is distinguished by problem solving techniques which emphasize the assignment of mathematical models to describe physical phenomena. MMI is a starting point to unify theoretical and empirical perceptions of the following topics: Kinetics, distributions and collisions The first law of thermodynamics The second law of thermodynamics The third law of thermodynamics Statistical mechanics MMI can be used as a text on the above topics in the first semester part of a two-semester undergraduate course in physical chemistry. Since many quantum ideas are introduced in the study of kinetics, distributions, collisions, and statistical mechanics, MMI serves as a logical foundation for the study of quantum mechanics and spectroscopy in the second volume, Mathematical Modeling II: quantum mechanics and spectroscopy (to appear in the fall of 2010)."

Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics

Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics PDF Author: Tian Ma
Publisher: American Mathematical Soc.
ISBN: 0821836935
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
This monograph presents a geometric theory for incompressible flow and its applications to fluid dynamics. The main objective is to study the stability and transitions of the structure of incompressible flows and its applications to fluid dynamics and geophysical fluid dynamics. The development of the theory and its applications goes well beyond its original motivation of the study of oceanic dynamics. The authors present a substantial advance in the use of geometric and topological methods to analyze and classify incompressible fluid flows. The approach introduces genuinely innovative ideas to the study of the partial differential equations of fluid dynamics. One particularly useful development is a rigorous theory for boundary layer separation of incompressible fluids. The study of incompressible flows has two major interconnected parts. The first is the development of a global geometric theory of divergence-free fields on general two-dimensional compact manifolds. The second is the study of the structure of velocity fields for two-dimensional incompressible fluid flows governed by the Navier-Stokes equations or the Euler equations. Motivated by the study of problems in geophysical fluid dynamics, the program of research in this book seeks to develop a new mathematical theory, maintaining close links to physics along the way. In return, the theory is applied to physical problems, with more problems yet to be explored. The material is suitable for researchers and advanced graduate students interested in nonlinear PDEs and fluid dynamics.

Navier-Stokes Equations and Turbulence

Navier-Stokes Equations and Turbulence PDF Author: C. Foias
Publisher: Cambridge University Press
ISBN: 1139428993
Category : Science
Languages : en
Pages : 363

Get Book Here

Book Description
This book presents the mathematical theory of turbulence to engineers and physicists, and the physical theory of turbulence to mathematicians. The mathematical technicalities are kept to a minimum within the book, enabling the language to be at a level understood by a broad audience.

Navier-Stokes Equations and Nonlinear Functional Analysis

Navier-Stokes Equations and Nonlinear Functional Analysis PDF Author: Roger Temam
Publisher: SIAM
ISBN: 0898713404
Category : Technology & Engineering
Languages : en
Pages : 147

Get Book Here

Book Description
This second edition attempts to arrive as simply as possible at some central problems in the Navier-Stokes equations.

Navier–Stokes Equations

Navier–Stokes Equations PDF Author: Grzegorz Łukaszewicz
Publisher: Springer
ISBN: 331927760X
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
This volume is devoted to the study of the Navier–Stokes equations, providing a comprehensive reference for a range of applications: from advanced undergraduate students to engineers and professional mathematicians involved in research on fluid mechanics, dynamical systems, and mathematical modeling. Equipped with only a basic knowledge of calculus, functional analysis, and partial differential equations, the reader is introduced to the concept and applications of the Navier–Stokes equations through a series of fully self-contained chapters. Including lively illustrations that complement and elucidate the text, and a collection of exercises at the end of each chapter, this book is an indispensable, accessible, classroom-tested tool for teaching and understanding the Navier–Stokes equations. Incompressible Navier–Stokes equations describe the dynamic motion (flow) of incompressible fluid, the unknowns being the velocity and pressure as functions of location (space) and time variables. A solution to these equations predicts the behavior of the fluid, assuming knowledge of its initial and boundary states. These equations are one of the most important models of mathematical physics: although they have been a subject of vivid research for more than 150 years, there are still many open problems due to the nature of nonlinearity present in the equations. The nonlinear convective term present in the equations leads to phenomena such as eddy flows and turbulence. In particular, the question of solution regularity for three-dimensional problem was appointed by Clay Institute as one of the Millennium Problems, the key problems in modern mathematics. The problem remains challenging and fascinating for mathematicians, and the applications of the Navier–Stokes equations range from aerodynamics (drag and lift forces), to the design of watercraft and hydroelectric power plants, to medical applications such as modeling the flow of blood in the circulatory system.

The Navier-Stokes Equations

The Navier-Stokes Equations PDF Author: P. G. Drazin
Publisher: Cambridge University Press
ISBN: 9780521681629
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
This 2006 book details exact solutions to the Navier-Stokes equations for senior undergraduates and graduates or research reference.

Introduction to the Numerical Analysis of Incompressible Viscous Flows

Introduction to the Numerical Analysis of Incompressible Viscous Flows PDF Author: William Layton
Publisher: SIAM
ISBN: 0898718902
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
Introduction to the Numerical Analysis of Incompressible Viscous Flows treats the numerical analysis of finite element computational fluid dynamics. Assuming minimal background, the text covers finite element methods; the derivation, behavior, analysis, and numerical analysis of Navier-Stokes equations; and turbulence and turbulence models used in simulations. Each chapter on theory is followed by a numerical analysis chapter that expands on the theory. This book provides the foundation for understanding the interconnection of the physics, mathematics, and numerics of the incompressible case, which is essential for progressing to the more complex flows not addressed in this book (e.g., viscoelasticity, plasmas, compressible flows, coating flows, flows of mixtures of fluids, and bubbly flows). With mathematical rigor and physical clarity, the book progresses from the mathematical preliminaries of energy and stress to finite element computational fluid dynamics in a format manageable in one semester. Audience: this unified treatment of fluid mechanics, analysis, and numerical analysis is intended for graduate students in mathematics, engineering, physics, and the sciences who are interested in understanding the foundations of methods commonly used for flow simulations.

Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations

Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations PDF Author: Beatrice Riviere
Publisher: SIAM
ISBN: 089871656X
Category : Mathematics
Languages : en
Pages : 201

Get Book Here

Book Description
Focuses on three primal DG methods, covering both theory and computation, and providing the basic tools for analysis.

Compressible Navier-Stokes Equations

Compressible Navier-Stokes Equations PDF Author: Pavel Plotnikov
Publisher: Springer Science & Business Media
ISBN: 3034803672
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
The book presents the modern state of the art in the mathematical theory of compressible Navier-Stokes equations, with particular emphasis on the applications to aerodynamics. The topics covered include: modeling of compressible viscous flows; modern mathematical theory of nonhomogeneous boundary value problems for viscous gas dynamics equations; applications to optimal shape design in aerodynamics; kinetic theory for equations with oscillating data; new approach to the boundary value problems for transport equations. The monograph offers a comprehensive and self-contained introduction to recent mathematical tools designed to handle the problems arising in the theory.