Interactions entre perturbations magnétiques macroscopiques et turbulence microscopique dans un modèle 3D d'un plasma de tokamak

Interactions entre perturbations magnétiques macroscopiques et turbulence microscopique dans un modèle 3D d'un plasma de tokamak PDF Author: Arnaud Monnier
Publisher:
ISBN:
Category :
Languages : fr
Pages : 134

Get Book Here

Book Description
Cette thèse porte sur l'interaction entre un plasma de bord de tokamak et une perturbation magnétique résonante (RMP), utilisée principalement pour le contrôle de phénomènes de relaxations quasi-périodiques, présents dans un régime de confinement amélioré. Il permet notamment d'atteindre des conditions favorables aux réactions de fusion nucléaire. Il a été observé que la présence de perturbations magnétiques modifie la topologie magnétique au bord ce qui engendre une diminution de l'amplitude des relaxations, voire leur suppression. De précédents travaux ont étudié l'effet de perturbations magnétiques sur un plasma relaxant via des simulations numériques. Le modèle utilisé était dans un cas électrostatique, c'est à dire que la topologie magnétique n'évoluait pas dans le temps. Dans cette thèse, l'étude est faite dans un modèle de plasma de bord prenant en compte les fluctuations magnétiques via le code numérique EMEDGE3D. Ce code a été modifié pour pouvoir imposer une perturbation magnétique résonante. Des vérifications par des modèles réduits ont été menées sur la pénétration d'une perturbation magnétique ainsi que sur l'effet d'une vitesse cisaillée sur la pénétration. Ensuite, un RMP a été imposé dans un plasma non turbulent avec et sans vitesse cisaillée. Un phénomène d'écrantage, empêchant la pénétration d'une perturbation, a été identifié analytiquement et observé dans les simulations. Cette étude a été réitérée dans un plasma turbulent, et aussi en présence d'une barrière (vitesse cisaillée). Le plasma turbulent engendre une amplification du RMP, tandis que la barrière est affectée par la présence de cellules de convection fixes générées par la perturbation.

Interactions entre perturbations magnétiques macroscopiques et turbulence microscopique dans un modèle 3D d'un plasma de tokamak

Interactions entre perturbations magnétiques macroscopiques et turbulence microscopique dans un modèle 3D d'un plasma de tokamak PDF Author: Arnaud Monnier
Publisher:
ISBN:
Category :
Languages : fr
Pages : 134

Get Book Here

Book Description
Cette thèse porte sur l'interaction entre un plasma de bord de tokamak et une perturbation magnétique résonante (RMP), utilisée principalement pour le contrôle de phénomènes de relaxations quasi-périodiques, présents dans un régime de confinement amélioré. Il permet notamment d'atteindre des conditions favorables aux réactions de fusion nucléaire. Il a été observé que la présence de perturbations magnétiques modifie la topologie magnétique au bord ce qui engendre une diminution de l'amplitude des relaxations, voire leur suppression. De précédents travaux ont étudié l'effet de perturbations magnétiques sur un plasma relaxant via des simulations numériques. Le modèle utilisé était dans un cas électrostatique, c'est à dire que la topologie magnétique n'évoluait pas dans le temps. Dans cette thèse, l'étude est faite dans un modèle de plasma de bord prenant en compte les fluctuations magnétiques via le code numérique EMEDGE3D. Ce code a été modifié pour pouvoir imposer une perturbation magnétique résonante. Des vérifications par des modèles réduits ont été menées sur la pénétration d'une perturbation magnétique ainsi que sur l'effet d'une vitesse cisaillée sur la pénétration. Ensuite, un RMP a été imposé dans un plasma non turbulent avec et sans vitesse cisaillée. Un phénomène d'écrantage, empêchant la pénétration d'une perturbation, a été identifié analytiquement et observé dans les simulations. Cette étude a été réitérée dans un plasma turbulent, et aussi en présence d'une barrière (vitesse cisaillée). Le plasma turbulent engendre une amplification du RMP, tandis que la barrière est affectée par la présence de cellules de convection fixes générées par la perturbation.

Turbulence plasma dans les étoiles et les tokamaks

Turbulence plasma dans les étoiles et les tokamaks PDF Author: Constance Emeriau-Viard
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Get Book Here

Book Description
Dans les plasmas magnétisés, l'interaction entre la turbulence, le magnétisme et les cisaillements grandes échelles joue un rôle important sur l'organisation du plasma et sur les processus de transport qui s'y produisent. Cette interaction et ses conséquences peuvent être étudiées dans leur développement non linéaire avec des simulations numériques hautes performance multi-dimensionnelles et par une analyse détaillée (dans l'espace physique et dans l'espace spectral) des processus de transport dans les plasmas. Dans cette thèse, nous nous intéresserons au cas des plasmas stellaires et de tokamaks. La première partie introduit les concepts fondamentaux de la physique des plasmas, communs aux deux domaines, puis les spécificités de chacun des plasmas avec la magnétohydrodynamique et l'évolution stellaire pour les plasmas stellaires et la théorie gyrocinétique pour les plasmas de tokamaks. La seconde partie se concentre sur les plasmas stellaires. À l'aide de simulations numériques 3D d'étoiles de type GK avec le code ASH, nous étudions l'influence du nombre de Rossby sur la convection. On détermine une transition à Ro=1 entre les faibles Ro ayant un profil de rotation différentielle de type solaire, ou à bandes comme Jupiter, et les Ro plus élevés pour lesquels la rotation est anti-solaire avec un équateur plus lent que les pôles. Nous proposons ensuite une suite de neuf modèles permettant de simuler les changements du champ magnétique au cours de l'évolution stellaire, de la phase d'étoile jeune, avec disque d'accrétion, à l'âge solaire. Au cours de la pré-séquence-principale (PMS), le taux de rotation et la structure interne de l'étoile changent de manière importante avec l'apparition et la croissance du coeur radiatif. Nous trouvons que que l'énergie magnétique augmente alors globalement à l'approche de la zero age main sequence (ZAMS). La topologie du champ devient de plus en plus complexe avec une composante dipolaire plus faible et un champ magnétique moins axisymétrique. Ce champ est généré par une dynamo type alpha-Omega pour laquelle l'effet Omega devient de plus en plus dominant lorsque l'étoile passe de 1Mans à 50 Mans, i.e. la zone convective s'amincit. Le champ magnétique contenu dans la zone radiative possède une topologie mixte poloidale toroidale qui satisfait les critères de stabilité des instabilités MHD en zone radiative. Une fois arrivé sur la ZAMS, la structure interne de l'étoile se stabilise et seul le taux de rotation change au cours de la séquence principale (MS), l'étoile étant ralentit par les vents magnétisés. Le ralentissement de l'étoile provoque une diminution de l'énergie magnétique contenue dans la zone convective. Une transition du profil de rotation différentielle peut être observée car le nombre de Rossby se rapproche de 1 et nous analysons les conséquences sur la topologie et les transferts spectraux entre les composantes du champ magnétique dynamo. La troisième partie de ce manuscrit aborde également les transferts spectraux d'énergie grande échelle dans les plasmas de tokamaks. L'utilisation du code gyrocinétique 5D GYSELA permet de simuler ces avalanches. Après une caractérisation de ces transferts, en espace et en vitesse, nous utilisons un diagnostic spectral sur l'entropie pour mieux comprendre leur origine et leur dynamique. Un lien de causalité "flux de chaleur turbulent" - gradient de température -- "cisaillement" peut alors être mis en évidence. Finalement, au vu des résultats obtenus, nous discutons les similarités entre les deux type de plasmas et proposons des pistes pour de futurs développements.

Etude des flux de matière dans le plasma de bord des tokamaks

Etude des flux de matière dans le plasma de bord des tokamaks PDF Author: Patrick Tamain
Publisher:
ISBN:
Category :
Languages : fr
Pages : 174

Get Book Here

Book Description
Le transport de la matière dans la zone de bord des tokamaks joue un rôle déterminant à la fois au centre sur les performances du plasma, puisqu’il gouverne l’établissement des profils de densité à partir de l’alimentation externe en particules, et en périphérie sur la durée de vie des composants face au plasma, puisqu’il fixe les flux de particules et d’énergie tombant sur les parois. Ce sujet reste cependant relativement peu exploré car l’interaction du plasma avec d’importants puits et sources de matière, quantité de mouvement et énergie rend la modélisation complexe. Dans la perspective d’ITER, des interrogations subsistent en particulier sur la capacité des systèmes d’alimentation par injection de gaz à atteindre les niveaux de densité élevés souhaités sans dégrader le confinement du plasma, ainsi que sur la forme des profils de densité obtenus et l’intensité des écoulements de matière au bord. Cette thèse s’inscrit dans un effort visant à mieux cerner les mécanismes régissant les flux de matière dans le plasma de bord et leur impact sur ces questions. Dans une première phase de notre travail, nous proposons une approche originale pour la modélisation de l’alimentation par injection de gaz en nous focalisant sur l’impact thermique de l’injection sur le plasma. En nous appuyant sur des modèles analytiques et numériques à nombre réduit de dimensions, nous démontrons en particulier l’existence de bifurcations thermiques déclenchées par l’injection et leur importance dans la dynamique du dépôt de matière. On montre ainsi que dans le cas de Tore Supra, le refroidissement local lié à une forte injection peut permettre une pénétration accrue de la matière (r/a = 1.1 à r/a = 0.9 en rayon normalisé), mais peut également mener à un déséquilibre thermique de l’ensemble du plasma en deçà d’un certain ratio puissance de chauffage / source de particules. L’extrapolation de cette étude pour ITER reste pessimiste quant à la profondeur de pénétration des neutres injectés. Toutefois, la sensibilité des résultats de ces modèles simplifiés à l’interaction entre les directions parallèle et perpendiculaire au champ magnétique montre la nécessité de développer des outils numériques modélisant de façon cohérente le transport de la matière dans les deux directions. Ceci a mené au développement d’un nouveau code 3D, présenté dans la seconde partie de ce travail. Il s’agit d’un code global en géométrie torique, prenant en compte les effets de courbure. Il résout les équations de dérive fluide électrostatique sans hypothèse de séparation d’échelle, ce qui permet de traiter avec le même outil les problématiques de transport à grande échelle comme les phénomènes de turbulence à petite échelle. Deux versions du code ont été développées et validées : l’une se place dans les lignes de champ fermées ; l’autre, plus lourde numériquement, inclut à la fois la Scrape Off Layer (SOL) et la partie externe du plasma confiné. Dans une dernière partie, le code est appliqué à la problématique des asymétries poloïdales sur les écoulements de matière dans la SOL, observées expérimentalement mais dont l’origine reste difficile à expliquer. Les simulations reproduisent l’ordre de grandeur des amplitudes mesurées et mettent à jour deux mécanismes distincts susceptibles de jouer un rôle dans ce phénomène, l’un à grande échelle, l’autre au niveau de la turbulence. Le premier vient d’un couplage entre les dérives à grande échelle et les effets de courbure dans la SOL, le second est lié à un ballonnement du flux radial turbulent côté faible champ. Enfin, l’importance de la résistivité parallèle du plasma sur les caractéristiques du transport turbulent est analysée et nous revenons sur l’impact d’une injection localisée de matière sur les propriétés de la turbulence.

Magnetohydrodynamic Stability of Tokamaks

Magnetohydrodynamic Stability of Tokamaks PDF Author: Hartmut Zohm
Publisher: John Wiley & Sons
ISBN: 3527412328
Category : Science
Languages : en
Pages : 254

Get Book Here

Book Description
This book bridges the gap between general plasma physics lectures and the real world problems in MHD stability. In order to support the understanding of concepts and their implication, it refers to real world problems such as toroidal mode coupling or nonlinear evolution in a conceptual and phenomenological approach. Detailed mathematical treatment will involve classical linear stability analysis and an outline of more recent concepts such as the ballooning formalism. The book is based on lectures that the author has given to Master and PhD students in Fusion Plasma Physics. Due its strong link to experimental results in MHD instabilities, the book is also of use to senior researchers in the field, i.e. experimental physicists and engineers in fusion reactor science. The volume is organized in three parts. It starts with an introduction to the MHD equations, a section on toroidal equilibrium (tokamak and stellarator), and on linear stability analysis. Starting from there, the ideal MHD stability of the tokamak configuration will be treated in the second part which is subdivided into current driven and pressure driven MHD. This includes many examples with reference to experimental results for important MHD instabilities such as kinks and their transformation to RWMs, infernal modes, peeling modes, ballooning modes and their relation to ELMs. Finally the coverage is completed by a chapter on resistive stability explaining reconnection and island formation. Again, examples from recent tokamak MHD such as sawteeth, CTMs, NTMs and their relation to disruptions are extensively discussed.

Effets de perturbations magnétiques sur la dynamique de la barrière de transport dans un Tokamak

Effets de perturbations magnétiques sur la dynamique de la barrière de transport dans un Tokamak PDF Author: Florence Solminihac (de)
Publisher:
ISBN:
Category :
Languages : fr
Pages : 167

Get Book Here

Book Description
Dans cette thèse nous étudions l'impact de perturbations magnétiques résonnantes sur la dynamique de la barrière de transport dans un tokamak. Pour cela nous avons réalisé des simulations numériques tridimensionnelles de turbulence dans le plasma de bord du tokamak. Nos simulations numériques ont reproduit les résultats expérimentaux observés dans différents tokamaks. Dans le régime de confinement amélioré (mode H), la barrière de transport n'est pas stable : elle effectue des oscillations de relaxation, qui partagent des caractéristiques communes avec les "modes localisés au bord'' (Edge Localized Modes, ELMs). Ces ELMs ont à la fois des avantages et des inconvénients. D'un côté, ils permettent d'évacuer les impuretés présentes dans le coe ur du plasma. Mais d'un autre côté, la charge thermique induite sur la paroi pendant un ELM peut endommager les matériaux de première paroi. Pour cette raison, ils doivent être contrôlés. Cette thèse s'inscrit dans le contexte du projet ITER actuellement en construction en France. Sur ITER, le contrôle des ELMs sera indispensable en raison de la quantité d'énergie évacuée. Parmi les différentes façons de contrôler les ELMs, les perturbations magnétiques résonnantes (Resonant Magnetic Perturbations, RMPs) semblent prometteuses. Ces perturbations magnétiques résonnantes sont créées par des bobines externes. Nous nous plaçons dans le cas du tokamak TEXTOR et nous considérons deux configurations pour les bobines externes : dans un premier temps, une perturbation magnétique résonnante comprenant plusieurs harmoniques, qui permet d'avoir une zone stochastique au bord du plasma lorsque les chaînes d'îlots magnétiques se superposent.

Interaction of Plasma Rotation and Resonant Magnetic Perturbation Fields in Tokamak

Interaction of Plasma Rotation and Resonant Magnetic Perturbation Fields in Tokamak PDF Author: A. Nicolai
Publisher:
ISBN:
Category : Plasma instabilities
Languages : en
Pages : 24

Get Book Here

Book Description


Global 3D Two-fluid Simulations of Turbulent Transport at Tokamak Edge Region

Global 3D Two-fluid Simulations of Turbulent Transport at Tokamak Edge Region PDF Author: Ben Zhu
Publisher:
ISBN:
Category :
Languages : en
Pages : 206

Get Book Here

Book Description
A new global 3D two-fluid code, GDB, based on the drift-reduced Braginskii model has been developed and tested to study the turbulent transport across the entire tokamak edge region: from plasma sources in the inner core to plasma sinks in the outer-most scrape-off layer (SOL). In this code, profiles of plasma density, electron and ion temperature, electric potential, magnetic flux and parallel flow are evolved self-consistently. Milliseconds-long simulations are carried out in a shifted-circle magnetic configuration with realistic Alcator C-Mod tokamak inner wall limited (IWL) discharge parameters. The resistive ballooning instability is identified as the predominant driver of edge turbulence in the L-mode regime. Simulations show, in agreement with experimental observations, as the simulation moves towards density limit regime by increasing density, the turbulent transport is drastically enhanced and the plasma profiles are relaxed; on the other hand, as the simulation approaches to the H-mode regime by increasing temperature, the turbulent transport is suppressed and plasma profiles are steepened with a pedestal-like structure forming just inside of the separatrix. Radial transport level and turbulence statistics of these simulations also qualitatively match the experimental measurements. Spontaneous E x B rotation in the electron diamagnetic drift direction in the closed flux region are observed in all cases. It can be explained based on the steady state ion continuity relation [mathematical equation]. E x B rotation in the closed flux region is found mostly cancels the ion diamagnetic drift as H-mode-like regimes are approached, and exceeds it by a factor of two or more at lower temperatures due to parallel ion flows.

Safety Factor Profile Control in a Tokamak

Safety Factor Profile Control in a Tokamak PDF Author: Federico Bribiesca Argomedo
Publisher: Springer
ISBN: 9783319019574
Category : Technology & Engineering
Languages : en
Pages : 96

Get Book Here

Book Description
Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium. Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs). The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The text then tackles the construction of an input-to-state-stability Lyapunov function for the infinite-dimensional system that handles the medium anisotropy and provides a common basis for analytical robustness results. This function is used as a control-Lyapunov function and allows the amplitude and nonlinear shape constraints in the control action to be dealt with. Finally, the Brief addresses important application- and implementation-specific concerns. In particular, the coupling of the PDE and the finite-dimensional subsystem representing the evolution of the boundary condition (magnetic coils) and the introduction of profile-reconstruction delays in the control loop (induced by solving a 2-D inverse problem for computing the magnetic flux) is analyzed. Simulation results are presented for various operation scenarios on Tore Supra (simulated with METIS) and on TCV (simulated with RAPTOR). Control of the Safety Factor Profile in a Tokamak will be of interest to both academic and industrially-based researchers interested in nuclear energy and plasma-containment control systems, and graduate students in nuclear and control engineering.

Turbulence, transport et confinement

Turbulence, transport et confinement PDF Author: Antoine Strugarek
Publisher:
ISBN:
Category :
Languages : fr
Pages :

Get Book Here

Book Description


Importance de la structure magnétique fine dans un tokamak pour le transport anormal et les disruptions internes

Importance de la structure magnétique fine dans un tokamak pour le transport anormal et les disruptions internes PDF Author: Roland Sabot
Publisher:
ISBN:
Category :
Languages : fr
Pages : 150

Get Book Here

Book Description
La compréhension de deux phénomènes dégradant le confinemnt des tokamaks, le transport anormal et les disruptions internes, représenterait une étape vers la réalisation de la fusion. Faisant l'hypothèse que la turbulence causant le transport anormal est à dominante magnétique, nous étudions l'équilibre thermique d'un plasma où apparaîssent des îlots magnétiques de largeur centimétrique. Ces perturbations rendent chaotiques les lignes de champs. Pour cette étude, nous utilisons une approche originale de type "système complexe" : la percolation dynamique. Cette approche permet d'intégrer dans un modèle unique des phénomènes aux échelles très différentes. L'évolution des îlots, donnée par la théorie des modes de déchirements, est couplée à l'évolution de la température par coefficient de diffusion. Celui-ci prend en compte les collisions et l'ergodisation des lignes de champs, il augmente fortement au voisinage d'un niveau de turbulence critique. La loi donnant le temps de confinement d'équilibre en fonction des paramètres globaux coïncide avec les lois expérimentales. La propagation des perturbations est très rapide et conforme aux résultats expérimentaux. Elle s'explique par l'augmentation importante de la diffusion au voisinage de niveau critique. Enfin, la variation infinitésimale d'un paramètre peut faire bifurquer l'évolution du système avec une stabilisation partielle de la turbulence au bord. Cette évolution évoque très fortement aux transitions des tokamaks. Les fluctuations de la lumière émise par un glaçon d'hydrogèen injecté dans le tokamak Tore-Supra fournissent une confirmation expérimentale à l'existence d'îlots magnétiques car elles s'expliquent par la traversée des îlots. A partir des ces stries, il est possible de mesurer le profil de courant et la largeur des îlots. Concernant les disruptions internes, nous montrons que la modification de la forme locale de la perturbation et la présence d'une zone de cisaillement nul abaissent le seuil de transition au chaos. Nous proposons un scénario pour expliquer l'évolution des disruptions internes.