Author: Simona Onori
Publisher: Springer
ISBN: 1447167813
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies.
Hybrid Electric Vehicles
Author: Simona Onori
Publisher: Springer
ISBN: 1447167813
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies.
Publisher: Springer
ISBN: 1447167813
Category : Technology & Engineering
Languages : en
Pages : 121
Book Description
This SpringerBrief deals with the control and optimization problem in hybrid electric vehicles. Given that there are two (or more) energy sources (i.e., battery and fuel) in hybrid vehicles, it shows the reader how to implement an energy-management strategy that decides how much of the vehicle’s power is provided by each source instant by instant. Hybrid Electric Vehicles: •introduces methods for modeling energy flow in hybrid electric vehicles; •presents a standard mathematical formulation of the optimal control problem; •discusses different optimization and control strategies for energy management, integrating the most recent research results; and •carries out an overall comparison of the different control strategies presented. Chapter by chapter, a case study is thoroughly developed, providing illustrative numerical examples that show the basic principles applied to real-world situations. The brief is intended as a straightforward tool for learning quickly about state-of-the-art energy-management strategies. It is particularly well-suited to the needs of graduate students and engineers already familiar with the basics of hybrid vehicles but who wish to learn more about their control strategies.
Intelligent Control for Modern Transportation Systems
Author: Arunesh Kumar Singh
Publisher: CRC Press
ISBN: 1000963527
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
The book comprehensively discusses concepts of artificial intelligence in green transportation systems. It further covers intelligent techniques for precise modeling of complex transportation infrastructure, forecasting and predicting traffic congestion, and intelligent control techniques for maximizing performance and safety. It further provides MATLAB® programs for artificial intelligence techniques. It discusses artificial intelligence-based approaches and technologies in controlling and operating solar photovoltaic systems to generate power for electric vehicles. Highlights how different technological advancements have revolutionized the transportation system. Presents core concepts and principles of soft computing techniques in the control and management of modern transportation systems. Discusses important topics such as speed control, fuel control challenges, transport infrastructure modeling, and safety analysis. Showcases MATLAB® programs for artificial intelligence techniques. Discusses roles, implementation, and approaches of different intelligent techniques in the field of transportation systems. It will serve as an ideal text for professionals, graduate students, and academicians in the fields of electrical engineering, electronics and communication engineering, civil engineering, and computer engineering.
Publisher: CRC Press
ISBN: 1000963527
Category : Technology & Engineering
Languages : en
Pages : 194
Book Description
The book comprehensively discusses concepts of artificial intelligence in green transportation systems. It further covers intelligent techniques for precise modeling of complex transportation infrastructure, forecasting and predicting traffic congestion, and intelligent control techniques for maximizing performance and safety. It further provides MATLAB® programs for artificial intelligence techniques. It discusses artificial intelligence-based approaches and technologies in controlling and operating solar photovoltaic systems to generate power for electric vehicles. Highlights how different technological advancements have revolutionized the transportation system. Presents core concepts and principles of soft computing techniques in the control and management of modern transportation systems. Discusses important topics such as speed control, fuel control challenges, transport infrastructure modeling, and safety analysis. Showcases MATLAB® programs for artificial intelligence techniques. Discusses roles, implementation, and approaches of different intelligent techniques in the field of transportation systems. It will serve as an ideal text for professionals, graduate students, and academicians in the fields of electrical engineering, electronics and communication engineering, civil engineering, and computer engineering.
Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
Author: Teng Liu
Publisher: Morgan & Claypool Publishers
ISBN: 1681736195
Category : Technology & Engineering
Languages : en
Pages : 99
Book Description
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.
Publisher: Morgan & Claypool Publishers
ISBN: 1681736195
Category : Technology & Engineering
Languages : en
Pages : 99
Book Description
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.
Intelligent Control of Connected Plug-in Hybrid Electric Vehicles
Author: Amir Taghavipour
Publisher: Springer
ISBN: 3030003140
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
Intelligent Control of Connected Plug-in Hybrid Electric Vehicles presents the development of real-time intelligent control systems for plug-in hybrid electric vehicles, which involves control-oriented modelling, controller design, and performance evaluation. The controllers outlined in the book take advantage of advances in vehicle communications technologies, such as global positioning systems, intelligent transportation systems, geographic information systems, and other on-board sensors, in order to provide look-ahead trip data. The book contains simple and efficient models and fast optimization algorithms for the devised controllers to address the challenge of real-time implementation in the design of complex control systems. Using the look-ahead trip information, the authors of the book propose intelligent optimal model-based control systems to minimize the total energy cost, for both grid-derived electricity and fuel. The multilayer intelligent control system proposed consists of trip planning, an ecological cruise controller, and a route-based energy management system. An algorithm that is designed to take advantage of previewed trip information to optimize battery depletion profiles is presented in the book. Different control strategies are compared and ways in which connecting vehicles via vehicle-to-vehicle communication can improve system performance are detailed. Intelligent Control of Connected Plug-in Hybrid Electric Vehicles is a useful source of information for postgraduate students and researchers in academic institutions participating in automotive research activities. Engineers and designers working in research and development for automotive companies will also find this book of interest. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Publisher: Springer
ISBN: 3030003140
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
Intelligent Control of Connected Plug-in Hybrid Electric Vehicles presents the development of real-time intelligent control systems for plug-in hybrid electric vehicles, which involves control-oriented modelling, controller design, and performance evaluation. The controllers outlined in the book take advantage of advances in vehicle communications technologies, such as global positioning systems, intelligent transportation systems, geographic information systems, and other on-board sensors, in order to provide look-ahead trip data. The book contains simple and efficient models and fast optimization algorithms for the devised controllers to address the challenge of real-time implementation in the design of complex control systems. Using the look-ahead trip information, the authors of the book propose intelligent optimal model-based control systems to minimize the total energy cost, for both grid-derived electricity and fuel. The multilayer intelligent control system proposed consists of trip planning, an ecological cruise controller, and a route-based energy management system. An algorithm that is designed to take advantage of previewed trip information to optimize battery depletion profiles is presented in the book. Different control strategies are compared and ways in which connecting vehicles via vehicle-to-vehicle communication can improve system performance are detailed. Intelligent Control of Connected Plug-in Hybrid Electric Vehicles is a useful source of information for postgraduate students and researchers in academic institutions participating in automotive research activities. Engineers and designers working in research and development for automotive companies will also find this book of interest. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.
Artificial Intelligent Techniques for Electric and Hybrid Electric Vehicles
Author: Chitra A.
Publisher: John Wiley & Sons
ISBN: 1119681901
Category : Computers
Languages : en
Pages : 288
Book Description
Electric vehicles are changing transportation dramatically and this unique book merges the many disciplines that contribute research to make EV possible, so the reader is informed about all the underlying science and technologies driving the change. An emission-free mobility system is the only way to save the world from the greenhouse effect and other ecological issues. This belief has led to a tremendous growth in the demand for electric vehicles (EV) and hybrid electric vehicles (HEV), which are predicted to have a promising future based on the goals fixed by the European Commission's Horizon 2020 program. This book brings together the research that has been carried out in the EV/HEV sector and the leading role of advanced optimization techniques with artificial intelligence (AI). This is achieved by compiling the findings of various studies in the electrical, electronics, computer, and mechanical domains for the EV/HEV system. In addition to acting as a hub for information on these research findings, the book also addresses the challenges in the EV/HEV sector and provides proven solutions that involve the most promising AI techniques. Since the commercialization of EVs/HEVs still remains a challenge in industries in terms of performance and cost, these are the two tradeoffs which need to be researched in order to arrive at an optimal solution. Therefore, this book focuses on the convergence of various technologies involved in EVs/HEVs. Since all countries will gradually shift from conventional internal combustion (IC) engine-based vehicles to EVs/HEVs in the near future, it also serves as a useful reliable resource for multidisciplinary researchers and industry teams.
Publisher: John Wiley & Sons
ISBN: 1119681901
Category : Computers
Languages : en
Pages : 288
Book Description
Electric vehicles are changing transportation dramatically and this unique book merges the many disciplines that contribute research to make EV possible, so the reader is informed about all the underlying science and technologies driving the change. An emission-free mobility system is the only way to save the world from the greenhouse effect and other ecological issues. This belief has led to a tremendous growth in the demand for electric vehicles (EV) and hybrid electric vehicles (HEV), which are predicted to have a promising future based on the goals fixed by the European Commission's Horizon 2020 program. This book brings together the research that has been carried out in the EV/HEV sector and the leading role of advanced optimization techniques with artificial intelligence (AI). This is achieved by compiling the findings of various studies in the electrical, electronics, computer, and mechanical domains for the EV/HEV system. In addition to acting as a hub for information on these research findings, the book also addresses the challenges in the EV/HEV sector and provides proven solutions that involve the most promising AI techniques. Since the commercialization of EVs/HEVs still remains a challenge in industries in terms of performance and cost, these are the two tradeoffs which need to be researched in order to arrive at an optimal solution. Therefore, this book focuses on the convergence of various technologies involved in EVs/HEVs. Since all countries will gradually shift from conventional internal combustion (IC) engine-based vehicles to EVs/HEVs in the near future, it also serves as a useful reliable resource for multidisciplinary researchers and industry teams.
Energy Management
Author: Francisco Macia-Perez
Publisher: BoD – Books on Demand
ISBN: 953307065X
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
Forecasts point to a huge increase in energy demand over the next 25 years, with a direct and immediate impact on the exhaustion of fossil fuels, the increase in pollution levels and the global warming that will have significant consequences for all sectors of society. Irrespective of the likelihood of these predictions or what researchers in different scientific disciplines may believe or publicly say about how critical the energy situation may be on a world level, it is without doubt one of the great debates that has stirred up public interest in modern times. We should probably already be thinking about the design of a worldwide strategic plan for energy management across the planet. It would include measures to raise awareness, educate the different actors involved, develop policies, provide resources, prioritise actions and establish contingency plans. This process is complex and depends on political, social, economic and technological factors that are hard to take into account simultaneously. Then, before such a plan is formulated, studies such as those described in this book can serve to illustrate what Information and Communication Technologies have to offer in this sphere and, with luck, to create a reference to encourage investigators in the pursuit of new and better solutions.
Publisher: BoD – Books on Demand
ISBN: 953307065X
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
Forecasts point to a huge increase in energy demand over the next 25 years, with a direct and immediate impact on the exhaustion of fossil fuels, the increase in pollution levels and the global warming that will have significant consequences for all sectors of society. Irrespective of the likelihood of these predictions or what researchers in different scientific disciplines may believe or publicly say about how critical the energy situation may be on a world level, it is without doubt one of the great debates that has stirred up public interest in modern times. We should probably already be thinking about the design of a worldwide strategic plan for energy management across the planet. It would include measures to raise awareness, educate the different actors involved, develop policies, provide resources, prioritise actions and establish contingency plans. This process is complex and depends on political, social, economic and technological factors that are hard to take into account simultaneously. Then, before such a plan is formulated, studies such as those described in this book can serve to illustrate what Information and Communication Technologies have to offer in this sphere and, with luck, to create a reference to encourage investigators in the pursuit of new and better solutions.
Recent Evolutions in Energy, Drives and e-Vehicles
Author: Nitin K. Dhote
Publisher: Springer Nature
ISBN: 9819707633
Category :
Languages : en
Pages : 671
Book Description
Publisher: Springer Nature
ISBN: 9819707633
Category :
Languages : en
Pages : 671
Book Description
Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
Author: Teng Liu
Publisher: Springer Nature
ISBN: 3031015037
Category : Technology & Engineering
Languages : en
Pages : 90
Book Description
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.
Publisher: Springer Nature
ISBN: 3031015037
Category : Technology & Engineering
Languages : en
Pages : 90
Book Description
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems founded in artificial intelligence and their real-time evaluation and application. In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.
Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems
Author: Aparna Kumari
Publisher: Elsevier
ISBN: 0443238154
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems: Fundamentals, Technologies, and Solutions is an essential reference for energy researchers, graduate students and engineers who aim to understand the opportunities offered by artificial intelligence for the integration of electric vehicles into smart grids. This book begins by building foundational knowledge for the reader, covering the essentials of artificial intelligence and its applications for electric vehicles in a clear and holistic manner. Next, it breaks down two essential areas of application in more detail: energy management (from to energy harvesting to demand response and complex forecasting), and market strategies (including peer-to-peer, vehicle-to-vehicle, and vehicle-to-everything trading, plus the cyber-security implications). A final part provides detailed case studies and close consideration of challenges, including code and data sets for replication of techniques. Providing a clear pathway from fundamentals to practical implementation, Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems will provide multidisciplinary guidance for implementing this cutting-edge technology in the energy systems of the future. - Supports fundamental understanding of artificial intelligence and its opportunities for energy system specialists - Collects the real-world experiences of global experts - Enables practical implementation of artificial intelligence strategies that support renewable energy integration across energy systems, markets, and grids
Publisher: Elsevier
ISBN: 0443238154
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems: Fundamentals, Technologies, and Solutions is an essential reference for energy researchers, graduate students and engineers who aim to understand the opportunities offered by artificial intelligence for the integration of electric vehicles into smart grids. This book begins by building foundational knowledge for the reader, covering the essentials of artificial intelligence and its applications for electric vehicles in a clear and holistic manner. Next, it breaks down two essential areas of application in more detail: energy management (from to energy harvesting to demand response and complex forecasting), and market strategies (including peer-to-peer, vehicle-to-vehicle, and vehicle-to-everything trading, plus the cyber-security implications). A final part provides detailed case studies and close consideration of challenges, including code and data sets for replication of techniques. Providing a clear pathway from fundamentals to practical implementation, Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems will provide multidisciplinary guidance for implementing this cutting-edge technology in the energy systems of the future. - Supports fundamental understanding of artificial intelligence and its opportunities for energy system specialists - Collects the real-world experiences of global experts - Enables practical implementation of artificial intelligence strategies that support renewable energy integration across energy systems, markets, and grids
Computational Intelligence, Communications, and Business Analytics
Author: Jyotsna Kumar Mandal
Publisher: Springer
ISBN: 9811385785
Category : Computers
Languages : en
Pages : 512
Book Description
The two volume set CCIS 1030 and 1031 constitutes the refereed proceedings of the Second International Conference on Computational Intelligence, Communications, and Business Analytics, CICBA 2018, held in Kalyani, India, in July 2018. The 76 revised full papers presented in the two volumes were carefully reviewed and selected from 240 submissions. The papers are organized in topical sections on computational intelligence; signal processing and communications; microelectronics, sensors, and intelligent networks; data science & advanced data analytics; intelligent data mining & data warehousing; and computational forensics (privacy and security).
Publisher: Springer
ISBN: 9811385785
Category : Computers
Languages : en
Pages : 512
Book Description
The two volume set CCIS 1030 and 1031 constitutes the refereed proceedings of the Second International Conference on Computational Intelligence, Communications, and Business Analytics, CICBA 2018, held in Kalyani, India, in July 2018. The 76 revised full papers presented in the two volumes were carefully reviewed and selected from 240 submissions. The papers are organized in topical sections on computational intelligence; signal processing and communications; microelectronics, sensors, and intelligent networks; data science & advanced data analytics; intelligent data mining & data warehousing; and computational forensics (privacy and security).